0.0 st 4a ahe’oid o'a’e'0 "0 4t uCh n'l 2" et

ME FILE COPY

Systems
Optimization
L_aboratory

AD-A198 945

Dynamic Pricing Criteria in Linear Programming Wy

by
Edward S. Klotz
i TECHNICAL REPORT SOL 88-15
i July 1988

Department of Operations Research
Stanford University
Stanford, CA 94305

!T'!mdccumonthmbm
| o1 publle relecre and saies im

028 252 a78" a8 uth a8 V8 2”8 72"t A 2 VA a8 alh a'h u¥8 ah a'S ah'al ' ath aWh abh aPh alp a¥h ket

I R ST S S e e S i

dlautbriton (8 unlimited, L

DTIC

FAELECTE

"E

Research and reproduction of this report were partially supported by the National Science Foun-
dation Grants DMS-8420623, SES-8518662, ECS83-12142; U.S. Department of Energy Grant DE-
FG03-87ER 25028, and Office of Naval Research Contract N00014-85-K-0343.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the author(s) and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

SYSTEMS OPTIMIZATION LABORATORY

DEPARTMENT OF OPERATIONS RESEARCH %

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

Dynamic Pricing Criteria in Linear Programming

by
Edward S. Klotz

TECHNICAL REPORT SOL 88-15
July 1988

CTIC

L ECTE
- SEP 081988

E

3y
~ "'
i

889 6 140

A e S A TR R DA TR

DYNAMIC PRICING CRITERIA IN LINEAR PROGRAMMING

' Edward S. Klotz
Department of Operations Research, Stanford University

I\»!:?g):r [Y,

7
% In recent years the interest in’/I‘inea.r programming algorithms has increased

greatly due to the discovery of ne: interior-point methods. New results have also
prompted researchers to reconsid¢r some previously discarded ideas in light of their
additional knowledge. This is begins with a study of some variants of the
reduced-gradient method applied to linear programs. Preliminary computational
tests revealed how sparsity and degeneracy, two characteristics present in most
practical problems, can severely inhibit such variants. The development of dynamic
pricing criteria to exclude certain columns from the search direction provides a corm
putationally efficient way to alleviate these difficulties. Application to the simplex
method yields a pivot rule d :signed to avoid degenerate pivots. Generalization of
the rule yields a cheap method to estimate the step lengths associated with potential
incoming nonbasic variables. The result is a set of pivot rules that appear partic-
ularly useful on highly degenerate and poorly scaled linear programs. Extensive

computational tests are presented. Newwords)

[/
\

Key words: linear programming, simplex method, reduced-gradient method, pric-
ing, degencracy. ~

Aacession For

NTIS CRAI g
DTIC TAB
Unannounced |
Justification

By.

Distz:_lﬁution/

—————]

Availability lodes
e 2L
Avail and/or
Dist Special

A-l

R v TR T T S T X T S S R O M R T O X A A A T A A T S A A A I O R T IR

ACKNOWLEDGEMENTS

It is probably impossible to acknowledge all of the people who somehow influ-
enced the writing of this work, but I shall try to do so. I apologize to anyone I may
have omitted.

Let me begin with those who contributed most directly. First of all, I wish to
thank Professor George Dantzig, my thesis advisor. His experience, knowledge, and
intuition provided uncountable contributions to this work, and he helped make the
educational process an interesting and enjoyable experience. I also appreciate the
availability of his time, a truly scarce resource for such a well-known individual.

I also wish to thank Professors Michael Saunders and Cuiiis Caves, the vuler
two members of my reading committee. Their contributions greatly exceeded their
constructive insights on the preliminary drafts. Michael Saunders is one of the cre-
ators of MINOS, a linear and nonlinear optimization code that was vital to many
of the experiments chronicled in this document. Without it, the time required to
properly implement many of the ideas developed here would have increased greatly.
Curtis Eaves directed many of the seminars that strongly influenced and improved
my understanding of linear programming. Those courses established a solid foun-
dation for the research described herein.

In addition, I wish to thank Professor Richard Cottle, the fourth member of my
orals committee, and Professor Michael Todd of Cornell University, who supplied
some constructive feedback on the first draft of this work.

Professors alone do not create an enjoyable educational experience. The ma-
jority of one’s time is spent with fellow students. I wish to thank all of the stu-
dents in the Department of Operations Research at Stanford for helping to create
a healthy learning environment. I especially appreciate Irv Lustig, Karel Zikan and
Sam Eldersveld for many enlightening conversations about optimization that have
improved this document.

Thus far I have only mentioned individuals I met while at Stanford. Many
others made great contributions by educating me to the level where I could beucfit
from the opportunity to study here. I suspect that all of my teachers made positive
contributions, but two in particular emerge in my mind as having played essential
roles without which I would not have started, let alone finished, this work. I wish
to thank Richard Murphy, who taught me mathematics during my sophomore and
junior years at New Trier East High School in Winnetka, Illinois. The improvement
I experienced under his tutelege was indeed astounding, and I feel very fortunate to
have received such good teaching. Second, I wish to thank Dr. Samuel Goldberg,
who instructed me in four different courses during my undergraduate years at Ober-
lin College, including my first one in operations research. He is a truly outstanding
teacher.

Naturally, I also wish to thank all of the members of my family for their encour-
agement. In particular, however, I thank Irving Klotz, my father. As a professor
of chemistry at Northwestern University, his own experiences enabled him to pro-

.i'i ‘i-“ll :‘)F.\.,\ .,‘).‘ e ‘?& “;;.f\' ot : ? -

vide tremendous support during my stay at Stanford, especially during the difficult
times.
Finally, I wish to thank the following random assortment of people for improv-
ing the quality of life during my time here:
Ed Brown,
Jacqui Lewis,
Dana Perry,
Scott Morris,
Steve Shapiro,
Sam Eldersveld,
Irv Lustig,
Liia Noonkester,
Peanut Harms,
Terence Boynton,
Dirk Rohloff,
the rest of the Thursday Night Brawlers,
the O.R. Jazz Band,
Mr. Green and the Men from Modesto,
Mark Perkins,
Fred Krueger,
Bill Peterson and
anyone else I forgot to mention.

Stanford University,
May, 1988.

R R R R A R R N R T O O N N N T T N i T P VU T O R R Sav bt gLt gty b

Y
A
@
it
) W
(M)
Nt
JON
TABLE OF CONTENTS o5
®
Qo
Chapter 1: INTRODUCTION v v v v i i i 1 <A
<
1.1 Notationo e e e 2 ..::'-
R
Chapter 2: FEASIBLE DIRECTION METHODS 4 il
]
2.1 Preliminarieso 4 Mok
2.2 The Choice of Search Direction e e 4 g
2.3 The Choice of Promising Variables 7
2.4 Pivoting Strategies 9 0
2.5 Effects of Degeneracy1 A
26 DynamicPricingo 14 .‘.;:3
2.7 A Modified Feasible Direction Method 17 e
2.8 Computational Results 18 “:f
®
Chapter 3: MULTIPLE-OBJECTIVE PIVOT RULES Ry
IN THE SIMPLEXMETHOD 20 i
o
3.1 Preliminaries 20 sl
3.2 Column Screening in the Simplex Method 20 o~
3.3 Estimating the StepLength 21 .
3.4 Parametric Variants of the Simplex Method 24 ..:":.:l‘
3.5 Reduction of the Additional Computation 33 e
\
Chapter 4: COMPUTATIONAL RESULTS 37 !"
?:.‘
4.1 Preliminarieso 37 ey
4.2 Screening for Degenerate Pivots 37 Ly
4.3 Screening for Small Step Lengths 38 2 o
4.4 Piecewise Linear Estimation of Step Length 39 .
4.5 Nonlinear Estimation of Step Length 39 5
4.6 ParametricMethod o000 L 40 2 -
4.7 Summary e e e e e e e e e e 41 :_E
ey
Chapter 5: EXTENSIONS AND FUTURE RESEARCH 71 :_,,: !
5.1 Feasible Direction Methods 71 oy
5.2 Dynamic Pricingo 000000 72 .
5.3 Parametric Algorithms 000000 L 73 vl
Y
)
Chapter 6: SUMMARY AND CONCLUSIONS 74 C. .

-

ey - 4

- e

9 o s

-

e LT e L a3 Ny o V8 e a0 Vi ah et AT et s b s R AR e et YA AYE e YA atE: AR M 95" at2 a8 o V] RN T

Chapter 7: APPENDIX1

7.1 A Procedure to Find an Optimal Vertex From an Optxmal Solution . 75
9 7.2 Extensions to Bounded Variables76 .

References e e8]

NN

-~

%

B S e e

LA e

w

T
P -~ S
-%,,.. -

e Ja N8 |

(7 -\-‘{,. N . g x . - AT BT R s N
1. ‘A‘ "\' 'Col‘u,l‘q. "v e ¥We. q‘.,l‘o u’)‘l‘ AL l c,l‘\ 'l' *"‘ o vl ‘.*‘." . ‘\';;{t};"’\ Py ¥

P R AW N RN N LN LR Y KA RRA RN U A A LN e Y o ey ¥ hin 679 8 T A R RR T AN P AT R AN AR ¢ $av

CHAPTER 1: INTRODUCTION

. After more than 40 years, Dantzig’s simplex algorithm remains the most pop-
ular method for solving linear programs. Since its invention in 1947, researchers
have proposed many other algorithms, yet none of these has consistently outper-

5 formed the simplex algorithm. In addition, many different pivot rules (see [2], [17],
¢ [18], [19), [43], [52] and [53]) have arisen for the method, yet most implementations
: continue to use Dantzig’s original pivot rule.

,, In 1984 Karmarkar [23] proposed a projective algorithm for linear programming
) substantially different from the simplex method. Karmarkar’s algorithm moves
P through the interior of the feasible region, while the simplex method traverses a
:: sequence of feasible vertices. While it remains unclear if this new algorithm will
:: ultimately replace the simplex method for solving practical problems (refer to [1]
K and [26]), the approach has profoundly influenced the direction of research in lin-

ear programming. Other algorithms have arisen (see [4], [42], [49] and [54]) that
are strongly motivated by the projective method. In addition, it has prompted
researchers to reexamine previously discarded ideas in light of their new knowl-
edge (see [15]). The research described in this thesis began by adopting the latter
approach, experimenting with variants of the reduced-gradient method applied to
linear programming. Although these experiments did not yield an algorithm supe-
'" rior to Dantzig’s method, they provided insight into the major drawbacks of these

-

o
e

o e
-

.-
- e

. variants. The experiments also inspired a set of dynamic pricing criteria that shows
;: great promise to improve the simplex method.

:: Chapters 2, 3 and 4 comprise the majority of the thesis. Chapter 2 discusses
‘ a set of feasible direction methods for linear programming similar to the reduced-
w gradient method. After a brief description, we examine how degeneracy can inhibit
v the progress of such algorithms. This obstacle motivates the development of pricing

criteria to avoid degeneracy. The idea also generalizes to deal with “near” degener-
acy. The result is a modified feasible direction method. We present computational
results for the method on some practical problems. The algorithm usually out-

o performed the simplex method with respect to iterations, but it always required
¢ more time. Nonetheless, the results reveal an improvement over previous tests of
3 similar methods. Pricing criteria to avoid degeneracy provide the main source of
4 improvement.

Chapter 3 considers the use of such pricing criteria in the context of the simplex
method. We first apply the results of Chapter 2. We then develop additional
criteria designed specifically to improve the simplex method. The result is a set

,‘.: of very promising multiple-priority pivot rules. One can view such procedures as
:: computationally inexpensive attempts to estimate the step length associated with
‘ a potential basic variable. Although fairly cheap, these techniques do increase the
; computational effort. We therefore develop results designed to reduce the extra
" work. In addition, we study a parametric simplex method due to Gass and Saaty

! that Dantzig recommends in [7] to avoid cycling. Although this approach usually

b by h ke AT GTA KR, e BT T A, R e W Al A CARNRY ol el Wal ta it Kyl al Wl B 5 000 2,8 e g e 8 S gtV 8 9" 5 0" ' 5°g %8 g% ph)’, TN B Sava e a0 b ¥ 0ok gat 4 ¢
~

performs well on highly degenerate problems, it Jdoes so without making any effort

to avoid degenerate pivots. This leads to a pivoting procedure that combines the g

parametric method’s selection rule with a multiple-priority pivot rule designed to ‘

o avoid degenerate pivots. The chapter concludes with some results designed to reduce X

0 the computational burden associated with the previously described rules. ’
B Chapter 4 presents extensive computational tests of the pivot rules described.

& Each rule requires fewer iterations than the simplex method on most problems. b
' However, the reduction in iterations does not always result in a reduction in com-
ﬁ:} putation time. Nonetheless, the rules typically perform quite well on the larger,

g more difficult problems. ;

:;: Chapter 5 contains a discussion of some untested ideas that may be fruitful ‘

areas for future research. Extensions of the ideas developed here, along with appli-
cations to nonlinear programming, are considered.

o Chapter 6 summarizes the thesis and provides some conclusions. The author .
){: hopes that the reader will have acquired some additional tools in his arsenal for 3
::‘, solving linear programs, as well as some new insight on some previously established
4 results.
An appendix follows the thesis. It describes details pertinent to the computa-
u tional experiments; for example, the ideas described in Chapters 2 and 3 had to be
;: generalized to deal with bounded variables. The appendix contains no new math- i
::: ematics, but it highlights significant differences between the theory and practice of A
':: linear programming. '
Iy 1.1. Notation 7
;:! This thesis deals primarily with linear programming. We begin by establishing d
g some pertinent preliminaries and notation. The author assumes that the reader is t
N

familiar with standard linear programming theory; if not, refer to [6] or [35]. For
details on the computational aspects of linear programming, see [14], [16], [31] and

“ [46). We consider the following standard form linear programming problem: !
iy
K minimize ¢’z ,E
R subject to Az =b (1.1) 3
z 20,
N where A € R™*", c € R", z € R™, and b € R™. Without loss of generality, assume Ny
D
o that m < n and A has full rank. 4t
o The dual of (1.1) is: '
! maximize bTw
: subject to A"r+v=c (1.2) v
I v>0. .
P We will often wish to consider submatrices of A. Consider I = {i,,...,i.} C
{1,...,m}and J = {j;,....5,} € {1,...,n}. Then
l: h
¥ A’ .:

-
-
o

-
.
-

N 2

ety

¢
U
.

-,“-. '._ ""' f\ J‘h *"_'\ _.“\..'- .I'
L » td

I RE LU RN C I g NS AP B S B v R R N S AL TSP S ~e_m e - AL, - .
o & Nf"' % "f«""' , N 4""1""" 'l‘ Fa" - 'f"h‘\"i‘!")"-f:-’ ':‘.f.f > o "J" “-f‘-'

CAMY) oA
..'1".0 .~.n .l’..‘ o 2

]
)
>,

0"20“!."?_-.12;"? e

represents the submatrix of A consisting of rows indexed by {i,,...,7,} and all
columns. Similarly,

A,
represents the submatrix of A consisting of columns indexed by {j,,...,7} and all
rows. Also,

Al W

consists of the submatrix of A with rows indexed by I and columns indexed by J.
This notation simplifies slightly for vectors; ¢, denotes the components of ¢ indexed
by J.

Let B be an m x m nonsingular submatrix of A. B is called a basis. Such a B
exists because A has full rank. When appropriate, we shall alsouse B = {j;,...,jm}
to index the corresponding columns of 4; thus B and A.; represent the same matrix.
Similarly, let NV index the set of nonbasic columns of A. Given a basis B, the linear
program (1.1) has the following equivalent canonical form:

minimize [l
subject to zp + A.nZTy =0 (1.3)
Tp, TN Z 0

where A = B~1A, b= B~'b, and &, = ¢}, — #TA.,. The m-vector = comprises the
basic duai variables and is defined by the linear system

T - T
©TB = cg.

The linear programs (1.1) and (1.3) provide the framework for the ideas deveioped
hereia. Additional notation shall be defined as the need arises.

Bl O LD W e VIR A0 5)

i CHAPTER 2: FEASIBLE DIRECTION METHODS

COCALA

2.1. Preliminaries :
Wolfe proposed the reduced-gradient method (see [50]) for linearly constrained »

optimization in 1962. While primarily intended for nonlinear objective functions, N,
the al n hm can also solve linear p rorra.ms Since its invention, several authors

P

) (see [9] [10] [12], [21], [& (36], [37] [40Land [45]) have described similar
¥ a gont for linear programs. One can view these approaches as extensions of)
) the simplex method since they utilize the notions of basic and nonbasic variables g
b yet allow for feasible iterates other than vertices. Computational results in the)
" literature usually deal only with random problems; one exception consists of tests 5
performed by Kallio and Orchard-Hays [22]. The purpose of this chapter is to
¥ broaden our understanding of such algorithms. We begin with a general description by
3 of the approach, provided in Sections 2.2-2.4. Section 2.5 discusses the effects of "3
’. degeneracy on such algorithms, while Section 2.6 develops techniques to deal with ¥
b this problem. Section 2.7 then proposes a modified feasible direction method based N
o on the results of Sections 2.2-2.6. Computational results on a set of practical test :
i problems are presented in Section 2.8.
)
by 2.2. The Choice of Search Direction
» Consider the linear programs (1.1) and (1.3). Assume a feasible solution z and '
v a basis B. Unlike in the simplex method, z here need not be a vertex, and B need .
o not be a feasible basis. We wish to choose a search direction ¢ € R™ such that :
' Aq = 0 and c¢"q < 0. Choose a set P C N of promising variables to change. For .
\] € P, set §; as the rate of change of zj; let §; = 0 for ;j & P. We will elaborate on .
;: how to determme é; and P later. Now, deﬁne the following search direction g: :
!. -
gr = 6p "
;:: dv\p = 0_ (2.1)]
Y s = —Args. i

. w =

Note that A Bqgp + A.pqp + A.n\pgnp = 0. For any suboptimal ¢ we wxll see in

Section 2.3 t‘faat there always exists a set P and rate of change §, such that c"¢ < 0.
K Therefore, ¢ provides a descent direction. Observe that if B is a feasible basis and

z is the associated vertex, then one can view the simplex method as a special case
' by choosing a single promising variable with negative reduced cost ¢; and setting ﬁ
X =1 . . o
» Given ¢, we wish to move to a new solution)

o5 5y

1 T=1z+6q (2.2) D
) .
b for any nonnegative scalar 6. Since ¢ lies in the null space of A, it follows that o
‘ AT = b, so we wish to choose § to maximize the improvement in the objective -
function while ensuring that F > 0. Observe from (2.1) and (2.2) that “
: T=(Tp,Fp,Tn\p) =(Ts -OZ-FquIP'{"quvIN\P)- (2.3)
L) *w
D 3
, 4)
) L&
P "
K .
'z-;'-‘\“-:.'h‘ﬂ’ ’.1‘."'.\':::’:");:' ,: '\‘,,-'.-,.__-.,-'r-- - '_ "\'_*.'\ o™ b S S P) \\

{qr“.'ar.'-"‘.r"r.l-.r.r-' G
8.

Since Ty\p = Ty\p 2 0, only variables in P and B may violate their nonnegativity 2
requirements. First, consider the variables in P. For j € P,

-

zj+0g; 20« 8g; > —z,
@93—2forj: g; <0

9
& 0 < min — N (2.4)
1:9; <0 q;
‘I'he same logic applies to the basic variables. For ; € B,
z;+6g; >0 6< min — L. ' (2.5)

J:¢; <0 g;

In order for T to remain nonnegative, § must satisfy (2.4) and (2.5) simultaneously.
In other words,

§= min —=i (2.6)
JEBUP:q; <0 q;

Recall that in the simplex method only a single nonbasic variable increases, so (2.4)
is always true, and (2.6) simplifies to the usual ratio test on the basic variables.
(2.6) guarantees that T = z + 08¢ > 0. Since AT = b, 7 is a feasible solution for the
linear programs (1.1) and (1.3). We now have defined a procedure to determine a
search direction ¢ and an associated step length 6.

The algorithm is incomplete since the rules governing changes in the basis and
determination of promising variables and their rates of change remain undefined.
Sections 2.3 and 2.4 examine those aspects in detail. Meanwhile, we extend the
search procedure to allow for a second search direction §. The algorithm will then
use a linear combination of ¢ and ¢ to compute the next feasible iterate. We define
g by viewing the constraints of the linear program (1.3) in the following equivalent
form:

X~.t’5131° < b— Z-N\P-'L'lv\ir’
Tnyp, Zp 2 0. (2.7)

(2.7) considers the algorithm from the perspective of the space of the promising
variables z,. The basic variables z, serve as slack variables. Observe that in this
space, movement from z to T implies movement in search direction g until at least
one of the hyperplanes defining the constraints is reached. In other words, once
we determine a search direction ¢, suppose that we move from the current feasible
solution z in the direction ¢ as far as possible. The step length 6 increases until a
slack variable attains zero; (2.6) determines the size of the step length and identifies
one or more such variables. A hyperplane corresponds to each slack driven to zero,
and we shall utilize such a hyperplane to determine a second search direction. In
order to identify a tight constraint, consider the ratio tests in (2.6). Let j* index a
variable achieving the minimum ratio, i.e.

. . I;
j* = argmin -——.
JEBUP: ;<0 §j
Two cases arise. If j* € P, then F;o = 0. Let r, index the component of P
containing j* ; P(rp) = j*. Alsu, let €], € R'"! represent the rp'™® unit row
5 d
=y
Pagtts
T

.1 * JUAN N P X A AR AR AP LRSS 5 W S LPL LT - ™ ™ T TR MM ™ N Nt X, -~ . ()
O R s T e R e T R N Ry e R G P e

...........

RPN KT RS U U USRSV INUATT RO LRI U ORI O A U RITAUR OO R O TR (K] PR

CAUAT e ®,

vector. In this case a tight hyperplane corresponds to the nonnegativity constraint
erpzp 20 (or, equivalently, x;+ > 0) found in (2.7). The second case occurs when
j* € B. In this case suppose the rgt* component of B contains j*. Then a tight
hyperplane corresponds to the constraint A,, Z, < byp —A.y\pZyyp. Summarizing
the two cases, let @, represent the normal to a tight hyperplane determined by the
ratio tests in (2.6). Then,

eI, ifj* € P
ab=1{_ (28)
Apr ifj*€B.

Given @p, project qp, the promising components of the first search direction, onto
the hyperplane @iz, = 0 in order to generate a second direction ¢p. Recall that
projection onto the null space of @7 is equivalent to projection onto the orthogonal
complement of the row space of 5'5. Projecting onto the row space of @} involves
the projection matrix

_ &

" @l

Projection onto the orthogonal complement of the row space of @} involves the
projection matrix
Gpd;

I— —.
@13

Hence,

. apdy
= (] - 228
e =0~ g

— . — (@rgr)
=~ O™ (29)

Notice that if j* € P, @, is a unit vector, and the computation of ¢, requires
very little extra work:

-~

dr =4r — €rpq;e.
However, if 3* € B, then

é =q _((CIBB_IA'FqP)
T Mler, BT1A Ll

Jer, B~ AL)".

In this case one must solve the linear system w™B = e] and then compute inner
products between w and A.; for each j € P. These computations require significant

extra work.
Given §p, we ensure that ¢ lies in the null space of A by setting

dgmep= 0 and
do = ~A.rdp. (2.10)

6

NN N NN R T O T R O RS O R R O R R U A R R T R U I WA S U T Y 8% 8% 8% 0%0. 8% #%2. 8",

Given a feasible solution x, we move to a new solution

T= (iaa im :EN\P)

= (za - gzqv‘]? - #Z-PéPv Tp+ 0gp + ugp, 1'~\p)- (2.11)

Since ¢ lies in the null space of A, AZ = b for all values of § and u. We wish
to choose @ and u so that i satisfies the nonnegativity requirement while bringing
about the largest possible change in the objective function. With a single search
direction this occurs when 6 is chosen as large as possible subject to the constraints
specified by the ratio tests in (2.4) and (2.5); one can view this as a one-column
linear program with solution given by (2.6). Finding the best combination of two
search directions requires the solution of a two-column linear program:

minimize (25g,)0 + (Zhd0)
subject to (—gp)8+ (—¢p)u < zp (2.12)
(A.pgr)f+ (A rde)p < 25,

Remember that z is a feasible solution, so § and u are the only variables involved
in (2.12). The objective function in this linear program measures the change in
the objective of the linear program (1.1) achieved by moving from r to . The
first set of constraints correspond to the nonnegativity requirements on #, implied
by (2.11), while the second set corresponds to the analogous requirement for I,.
Therefore, Z is feasible for the linear programs (1.1) and (1.3).

We have just described a procedure that defines a two-dimensional search plane
instead of the usual one-dimensional search line. The use of a search plane requires
significant additional computation, but it offers an extra dimension that can help
the algorithm avoid getting stuck in a long sequence of iterations with minimal
progress. One can solve two-variable linear programs quickly. One could implement,
a specialized simplex method that exploits the fact that the constraint matrix of the
linear program (2.12) consists of two columns plus an identity matrix. Therefore,
during any iteration, a basis contains at most two columns other than unit vectors,
which should reduce the work involved in basis factorizations and updates. A second
approach consists of using a special linear-time algorithm for two-variable linear
programming (see [30]). The latter method was adopted here.

2.3. The Choice of Promising Variables

Section 2.2 described how to change a feasible solution z to a new feasible
solution T (or Z, if one uses two search directions). This section investigates the
determination of P, the index set of promising variables. We wish to choose P so
that a decrease in the objective function will always result from the change in r.
In the literature the most frequently encountered selection rule consists of selecting
each nonbasic variable that would individually decrease the objective function. In
other words,

J€EPIf 7;<0,z;2>00r
3j>0, z; > 0. (2.13)

We then set q; = —C; for 7 € P. (2.1) now precisely specifies the search direction
q; J J p Y SP . 7 -

q. Note that because z need not be a vertex, the objective function will improve by

decreasing a positive nonbasic variable with positive reduced cost; such variables

7

) AN W P o » O r " W " Y W
S, oty .lq N, "-h XA ,'t v o's'l (..:'i'.o'l.v A .v'l‘

S tr A Tl Vet €t FaN AT et a0 EaY et a0V U0 07 00 8 e B 8% 10 A e VR RN AN RN R VAT AV U AR Sk gt R ¥ el caf TRl al Sal Y d iy aay At St
’

e
0
\.c
do not exist in the simplex method. In Section 2.7 we will modify (2.13), but the :";
change will not affect any of the ideas discussed in the remainder of this section. W
Notice that the simplex method’s one-to-one correspondence between bases "
and feasible solutions no longer exists. In fact, one can associate a feasible so- ‘i
lution z with any basis, even an infeasible one. Since the values of the reduced ‘:Q:
costs depend on the choice of basis, so does the determination of P. Given z, a :l:c
particular nonbasic variable could increase for one associated basis yet decrease for 0!
another. Nonetheless, the following lemma shows that ¢ remains a descent direction N
regardless of the choice of basis. S
Lemma 1. Given a feasible solution z and any basis B for the linear program o
(1.1), suppose one defines q as follows: 04
“.:
- O
gp = —Cp ~
gmp= 0 (2.14) .
QB = —Z'PqP = X-PEP' :;"‘
4!
Then ¢"q < 0. ::Ei'
.o, . . '. (]
Proof. We prove the lemma by partitioning ¢ and ¢ by B, P, and N \ P: .1:*:
cTq = cpqs + €1dr + Ch\pdmp *
= cTB YAt — cIE, !
=T i
-7
PR A
= (WTA.p - Cﬁ)zp 7
X
= [zl < 0. 0 "
bt
(Nl
Lemma 1 implies that a feasible descent direction always exists if the current &
solution is not optimal. Note that although the resulting second direction ¢ need not e
guarantee descent, the optimal solution (8*, u*) to the two-column linear program X9
(2.12) yields the descent direction *q + u*q used to determine £ in (2.11). This is A
true because one can set u = 0 in (2.12) and use only ¢ as a search direction. o
The loosening of the relationship between bases and feasible solutions discussed é::
here raises a similar ambiguity with respect to optimality of a solution. One would j
hope that if the set P is empty during a particular iteration, then the current ®
feasible solution is in fact optimal. Lemma 2 reveals this to be true regardless of eh
the associated basis. :'(
Lemma 2. Given a feasible solution = and a basis B for the linear program (1.1), \
if P is empty, then z is optimal. %
Proof. We prove the lemma by utilizing the complementary slackness conditions, .‘.
which are necessary and sufficient for optimality. First, note that for j € B, ¢; =0 .o:::
and z; > 0. Furthermore, since P is empty, its definition (2.13) implies that for :::.:
JEN,z;=0if& >0,and ¢ =0 if z; > 0. We conclude that the primal feasible ‘:‘.
solution z and the dual feasible solution (7, T) satisfy the complementary slackness Nt
conditions. e N
Lemma 2 provides a simple termination criterion for the algorithm. Notice v,
that, unlike the simplex method, the resulting optimal solution need not be a vertex. is:
" d
8 o
X
‘E?.t
Kl

. _ f
X0 LEOBHROB0G0) by [I 0 DR Py W [s S O
IR A AR AR A R A O R NG TR R AN X DE XK X D e Do LA O KO KN K P e M, (g D O OO T O D O O LD N A

When solving practical linear programs, the modeller frequently wishes to perform
sensitivity analysis. In order to do so, the optimal basis must correspond directly
with the optimal solution. Unlike the simplex method, the algorithm described
here does not guarantee this correspondence. Fortunately, one can design a simple
procedure to move from an optimal solution to an optimal vertex. For details refer
to the appendix.

2.4. Pivoting Strategies

After defining the set of promising variables and moving to a new feasible solu-
tion, all that remains undefined in an iteration is a pivoting procedure to change the
basis. For expository purposes assume the algorithm uses a single search direction
g; the procedure is very similar for two search directions. Many different pivoting
strategies are available. For the computational tests in Section 2.8, the pivot rule
depends on the value of the step length 8 defined by (2.6).

Case 1: Suppose that § > 0. Given the precise definition of ¢ in (2.14), we
specify the ratio test in (2.6):

. Ty . . T, . z,.
6 = min -2 =m1n{_ min =X, min —=X% } (2.15)
J:¢; <0 gj JEPE>0 T i A; pEp<o Ai,pap

Recall that ¥ is the current feasible solution resulting from the iterative step (2.2).
Let s index the entering basic variable; choose the largest promising variable to

enter the basis:
s = argmax¥;. (2.16)

JEP

Other criteria were also tested, but (2.16) emerged from the experiments as the best
one.
Selection of the outgoing variable depends on the sign of the reduced cost ¢,.
If ¢, < 0, we wish to increase the incoming variable. However, if the ratio test in
§2.15) results in a basic variable reaching zero, we also wish to remove that variable
rom the basis. The following procedure always achieves at least one of these goals.
As in Section 2.2, let ry be a component of B containing a basic variable driven
to zero by the basic variable ratio test in (2.15); j,, indexes the corresponding

variable. Define 4., = B~1A., as the representation of the incoming column with
respect to the current basis. If A,,, > 0, then select j,., as the outgoing basic
variable and change the basis. Otherwise, select the outgoing variable by the usual
simplex method ratio test:
z;,
r = argmin = (2.17)
A5, >0 Ais
Choose the rt* basic variable j, to leave the basis. Associated with r is 8, the
increase in the entering variable:

L:gngﬁ (2.18)
1A ,>0 A4,

Note that if 4; , < 0, the algorithm terminates with an unbounded solution. If not,
update the current feasible solution:

T, —~T,+0

D

fa ""‘fa —Z'S

9

e
¢ by WU ” \P LEAY LTI " (TLIS T PR PR e . G Pt T . p?
T L i L e G N s AN I T A S o 2

RN NN N N 3 O T K O R O O T U O T N S O T T O N T O N I T O O O O OO R O O)',_--"x

Note that the updated solution remains feasible. Now, replace the r** column of
the basis with A.,. At this point a few observations are in order. First of all, note
that if r, exists and A,,, > 0, then r, is an argmin of the standard ratio test
(2.17), and the corresponding increase § is zcro. Note also that if no basic variable
hits zero in the ratio test (2.15), then no such index r, exists; proceed immediately
with the ratio test (2.17). This completes the pivot rule when g, < 0.

If S, > 0, we wish to decrease the incoming variable as much as possible
without violating its nonnegativity requirement. One must also ensure that the
basic variables remain nonnegative. In this case, if r, exists and A4,,, < 0, then
the rt* basic variable leaves the basis; do not perform a ratio test. Otherwise,
perform the following ratio test to preserve nonnegativity of the basic variables:

. T,
r = argmin — =%, (2.19)
i:A; ,<0 Ai,

The difference between (2.17) and (2.19) occurs because the entering variable de-
creases when &, < 0. In addition, define

= min —=%, 2.20
i:Z'.-,,<0 Ai. ()

G is the largest possible decrease in the entering variable that preserves nonne ativity
of the basic variables. Remember that one must also guarantee that the decrease
in the entering variable does not violate its nonnegativity constraint. Observe that
this implies that the algorithm never terminates with an unbounded solution when
g, < 0. If § > 7,, the entering variable reaches zero without driving any of the basic
variables below zero. In this case avoid the pivot and merely update the present
solution:
T, +~0

Ty —Fp+ AT,
If 8 < 7,, then a pivot is necessary. Update F as follows:

T, — T, -8
Tp — Ty + A..0.

Replace A.;, with A., as the r** basic column. This completes the pivoting proce-
dure when &, > 0.

Case 2: Suppose that 8, the step length in (2.15), is zero. Observe that
promising variables with negative reduced costs cannot directly bound 4. Since
z; > 0if j € P and ; > 0, one sees that among the promising variables the
minimum ratio in (2.15) must be positive. It follows that § = 0 only if at least one
basic variable j, is zero and the corresponding component in the search direction

qj, = A, pCp < 0. Experimentation with a set of 12 practical problems suggested
the benefit of removing such variables from the basis. Accordingly, a procedure to
ensure removal was adopted. Define
S={jeP:%;<0,4,;>0 or
g >0, 4, <0}.

10

Since A, % < 0, we know that 3 j € P : ¢ <0 and 4,; > 0,0r ¢; > 0 and
Z,,,- < 0. Hence, |S| > 1. In other words, there exists at least one promising

variable whose entrance into the basis wiil remove the r** basic variable. S indexes
all such variables. We now select the largest nonbasic variable in S to enter the
basis:

s = argmax Z;.

J€S

One can improve the stability of the algorithm by modifying the rule to ensure a suf-
ficiently large pivot element. Murtagh and Saunders [32] recommend the following
modification. Define _

a = max |4, |,

JES

and choose —
s = argmax{ZT; : |A,,;| =2 0.1a}.
J€S

Observe that if ¢, < 0, then A, , > 0 since s € S; hence we see from the standard
ratio test (2.17) that the r** basic variable is eligible to leave the basis. Similarly,

the ratio test (2.19) assures eligibility if &, > 0. In each case §, the change in the
incoming variable, is zero, so no change in the current feasible solution occurs. The
pivoting procedure when 6 = 0 is now complete.

We have now accounted for all possible values of . The pivot rule is complete.
We can now update the basis and proceed with the next iteration.

2.5. Effects of Degeneracy

The previous three sections provided a general description of a type of feasi-
ble direction method for linear programming. Some flexibility exists with respect
to selection of promising variables, pivoting procedure, and other details, but the
fundamental approach remains unchanged.

Very little computational testing of this type of algorithm exists in the liter-
ature. Nonetheless, several publications remain noteworthy. In 1979 Cooper and
Kennington [5] discussed linear programming algorithms:

We find it curious that the literature contains so few papers concerning
other algorithms for such an important class of problems. We assume ei-
ther (i) other ideas have been investigated, abandoned, and never reported,
or (ii) the simplex method has proved so effective that other investigators
felt no motivation to work in this area.

They went on to propose algorithms within the class described here. No compu-
tational t« :ting was performed. Sherali, Soyster, and Baines [45] tested a similar
algorithm on a set of random problems. They remarked:

Computationally, this method turned out to be substantially inferior
to the simplex method ... One may expect in this instance that after some
rapid initial improvements, the reduced gradient procedure goes through
many more insignificant iterations. This was not the case ... What appears
to happen is that instead of jumping along the simplex path, and hence
rendering itself advantageous, the procedure zigzags across the simplex
path, resulting in several more iterations.

ST U U * 3 e WA nT atd p N S WA RTE D B a4 D R R g A aE AV TS e tE a%8 098 %8 a¥h atd a8 2%k 4'8.0" b 058,

Eiselt and Sandblom (8] also report discouraging results for a similar approach:

The intended “shooting through polytopes” in our study resulted in
many problems, most prominently numerical instability and convergence
problems. On that basis, the method was referred to as “crawling and
stalling” and work on it was discontinued.

Eiselt and Sandblom altered their approach to allow for the notion of external
pivoting. With this modification they reported encouraging computational results
on a set of random problems. Meanwhile, Kallio and Orchard-Hays [22] tested a
reduced-gradient method on a set of non-trivial practical problems. They restricted
the set of promising variables to at most seven, regardless of problem size. They
also utilized a multiple pricing procedure in an attempt to reduce the average work
per iteration. Nonetheless, they too found their approach required more iterations
than the simplex method on most of their test problems.

The initial tactic adopted here was to utilize the two-dimensioral search method
described in Section 2.2. It was hoped that this method would alleviate the difficul-
ties described by these authors. However, the flexibility provided by an additional
direction proved insufficient to make the approach competitive with the simplex
method. Iteration counts ranged from 1.3 to 2.1 times those of the simplex method
on the 12 practical problems tested. CPU times were not even considered since each
iteration requires significant extra work compared to a simplex iteration.

The reader may find these results surprising; intuitively one might anticipate
that moving through the feasible region instead of around it would provide a sub-
stantial advantage over the simplex method. However, detailed examination of these
algorithms reveals an explanation for the poor performance on practical problems.

Sparsity and degeneracy are two charactenstics of practical problems that are
absent from most randomly generated problems. Although one can generate sparse,
random problems, they still lack the sparsity patterns characteristic of real prob-
lems. Sparsity and degeneracy inhibit the performance of the algorithms of Sections
2.2-2.4. In particular, values of zero in the ratio test that determines the step length
occur much more frequently than in the simplex method. To see why, recall the
ratio tests involved to determine the step lengths. If we use a single search direction,
define P by (2.13), and set q; = —; for j € P, then the step length 6 is bounded

above (see (2.6) and (2.15)) by the following minimum ratio:

< _ min —2 (2.21)
i4; p(~2p)>0 Ai p(—Cp)

On the other hand, a slightly different ratio test bounds the step length in the
simplex method: .
§< min =% (2.22)
:A;,>0 A4

Note that the simplex method uses a single column 4., in the ratio test, while
the feasible direction method uses a linear combination of many such individual
columns. Why is this difference significant? On problems tested here the canonical

columns 4. ; typically remained sparse, albeit not to the extent of the corresponding
original columns A.;. Taking a linear combination of many such sparse columns as
in the ratio test (2.21) increases the density of the composite column A.,(—¢,).
This occurs regardless of the choice of search direction if |P| is substantial. The
result, as illustrated by Figure 2-1, is that the dense composite column contains

12

R R R R R N A U N N Y R R NI A AR AN IR XX

Figure 2-1. Degeneracy and Linear Programming Algorithms

Simplex Method Feasible Direction Method

A, = A,(=Tp) s

0\ (1) 2\ ()

. .
i -

N e e Ty

ocoot+ooc0co+

|
~—

|l o4+ | ++ | o+ +

N—

o+o++++oco+4+ 0

—
N—

\-/ \3)

(6>0) (6 =0)

~

many positive components, each of which is eligible in the ratio test. Contrast this
with the simplex method, where usually only a few positive components exist.

Given the presence of degeneracy in the basic variables, one sees that the
minimum ratio of (2.21) equals zero with greater likelihood than that of (2.22).
This also explains why the simplex method can frequently solve degenerate linear
programs without performing too many degenerate pivots; the degenerate basic
variables frequently correspond to non-positive components of the column in the
ratio test. The same cannot be said for the algorithms in Sections 2.2-2.4.

This kind of difficulty need not arise only in the presence of degeneracy. As
long as the nonbasic columns A.; remain sparse, feasible direction methods will
frequently be restricted by the step length associated with the worst promising
column. To see this, consider the following small numerical example:

(1)) o) 1)
-2 1 0 1

0 . -1 . 0 4
0 0

0 2
\ o / \ o/ \s/ \s/

1
C(1.2,3) =(—l,—1,—§). (2.23)

e

.-
A

In this example P = {1,2,3}, and 0 < ¢ < 1. In the simplex method the step
lengths associated with entering columns 1,2, and 3 into the basis are 1,1, and ¢,
respectively. The corresponding improvements in objective function are 1,1, and
5. Since € may be arbitrarily small, we see that columns 1 and 2 are good choices,

.'o. . R S PR A R R R
", b W e gt S e o S Sy AN W

BN Y Y N T W T, Lo R A TR RS R A T X RS KR O O R O O R IS B a8t 00 0 8D

while column 3 is a poor one. Fortunately, the standard simplex method would
choose 1 or 2 to enter the basis in this situation. Given the choice of P, we see that

X.,(—EP) =| -1

From the ratio test (2.21) it follows that the corresponding step length cannot exceed
2¢. Similarly, since €5qp = —C5Cp = —%, the resulting improvement in the objective
function is at most Fe. Thus, for € < %, the feasible direct’on algorithm yields a

smaller improvement than the simplex method. Note, however, that if P = {1,2},
then

X.P(—EP) =1 -1

0
\ 0/
The resulting step length is now 1 and the improvement in the objective function is 2,
so the feasible direction approach outperforms the simplex method. The important

observation here is that A.; is complementary to A.; and A.,. Therefore, 4.;
limits the feasible direction step length regardless of the benefit of other promising
columns. Because of sparsity, this situation occurs frequently in practical problems,
and it creates a significant obstacle for any of the algorithms previously described
herein. Of course, the simplex method, which is a feasible direction method that
selects cnly one promising variable, may also choose poorly. However, the point
here is that it takes only one bad column to inhibit the step length; an algorithm
selects such a column more frequently when it chooses many promising variables
instead of one.

How can we overcome these difficulties? Observe that in the numerical example
the feasible direction method progresses nicely when we exclude column 3 from the
set of promising variables. This suggests the benefit of screening out certain bad
columns as unpromising, even though they satisfy the previous promising criterion
(2.13). In the next section we shall develop some computationally inexpensive
techniques to do so.

2.6. Dynamic Pricing

Section 2.5 demonstrated how a single column with a small step length can
inhibit progress of the algorithms of Sections 2.2-2.4. We now develop methods to
screen out such columns in a computationally inexpensive way.

Let us begin by considering columns with zero step lengths. Define

6, = min i j EN. (2.24)
5:7‘,,->o Ai'J‘
14

T8 ¥ N ! L Pl . | v Ny Oy g O, - 1..~,.~a\q " "\,"“i—"\\"' ‘ q"‘.{-l'. - l!.\'\n -F\x-ql-‘pr\
DR R A o ey o e T 4 2 T a.. e o e o A

U

N NS
'..‘ ™ \-'

Y ..

Ly

DORHR0000

PR Sl el Ro g g8 iR S0 g Ral Y Tl e a € Vel Vol Soh Tul Rel Ve B Vad aad vaB Vo dat Sad Ref g Soh LD LR AR FR Sal Sl Go] Sap vyl

8; is the step length that would result from increasing the j** variable. For ex-
pository purposes we shall consider the case of promising variables with negative
reduced costs; similar logic applies for those with positive reduced costs. For a
variable with a zero step length, §; = 0, so from (2.24) one sees that at least one

basic variable equals zero and corresponds to a positive component of A.; in the
ratio test. How can one detect such columns in advance? For each j € P, one could
explicitly determine 6; and exclude any columns for which §; = 0. Unfortunately,
this would require the representation 4., of the columns A., in terms of the cur-
rent basis. In other words, one must solve |P| systems of linear equations of the
form By = A.j, a prohibitively expensive task. A much cheaper approach consists
of defining a second objective function that measures the degeneracy of the basic
variables in a way that yields valuable information on how to exclude bad columns.
Since the basic variables change during iterations when the objective improves, this
second objective function changes during the course of the algorithm. In particular,
at the start of a given iteration, define d € R™ so that d; =0 for j € N, and

dj.~={1 if z;, =0,

0 otherwise (2:25)

for i = 1,...,m. Thus, d identifies the degenerate basic variables. For j € F

compute the quantity d; = d54.;. The following lemma provides a simple column
screening criterion.

Lemma 3. Ifaj > 0, then 6; = 0.
Proof. A closer look at d; proves the lemma. Observe from the definition of d,

in (2.25) that
> A

iz, =0

PN

3 =
In other words, 3]- consists of the sum of components of /1. ;j that correspond to a
degenerate basic variable in the ratio test in (2.24). Therefore, if d; > 0,
3q:*: Z,'o'j >0, Tje = 0.

Note that i* is eligible for the ratio test (2.24), so

T,
0<0, < =2 =0,
= J-Ai‘,j

which establishes the desired result. o
Thus, if d; > 0, one knows in advance that z; results in a zero step length if

it becomes basic. Furthermore, we shall see how to compute 3,- efficiently. We now

have a method to exclude columns from P. Note that d; < 0 does not necessarily
imply that 8; > 0; consider

1 0
-2 0
Adj=)-2], zs=|1
0 4
0 0

15

o IO I O S A0 O AT, j AR NN A X b = 5 N N AT SN
ORI W ISR a"’u‘!“‘!‘l‘. WA, ""o'!‘\‘g.l‘!.t"- X CATA i'- e OO O

N

e

1

"

R PLVAFS § = " ‘
)9 A .a,h. el ‘. ()

We now show that the computation of d; requires essentially the same amount
of work as computing the reduced costs Z;. One does not compute d; from the
expression d}A.;; this would involve solving for each 4.;, j € P. Instead, observe

that _ _
dj =djA;=(dyB™)A,;.

Let o7 = d5,B~'. Generate o by solving the linear system
o"B =dj. (2.26)

Solving for o is analogous to solving for 7, the dual variables. Now, compute
d; = oTA.;. Computing d; for all j € P requires only one additional solve, as
opposed to the |P| additional solves needed to examine individual components of
each A.;. More generally, one can generate any linear combination of the rows of the

matrix A., with one additional solve, but examination of individual components of
each column of that matrix requires |P| extra solves. The key, of course, consists
of choosing a linear combination that yields valuable information, as in (2.25).

Let us now extend this notion to deal with small values of ;. In (2.25) an
indicator function I{,; o) determined the value of d;;. In general one can set

dj; = f(z;) i=1,...,m (2.27)

for any specified function f. Lemma 4 proposes some beneficial choices of f.

Lemma 4. Given T > 0, suppose that d;;, = f(z;,) where

f(zj‘.) >0 I.f-tj'. <T,

f(.‘L‘j..) =0 if T, 2 T. (228)
Then -
d;j>0=6; < — =
i:;:,‘j";o (¥}

Proof. Lemma 3 is a special case of Lemma 4, so we utilize a similar strategy to
prove the result. Given the definition of f,

di= Y A:f(z;,)>0=>3i": 4 ;>0and 75, <T.

nz;. <r

The basic variable indexed by :* is eligible for the ratio test in (2.24), so

Ti.e Ty.0 T
0<6; <=2 < I < —. o
i*,j min A, ; min A, ;
’ i:x"“")O -‘:7,-.,)0

Lemma 4 provides a way to screen out columns with small step lengths. Again,
the procedure requires only one additional solve. The particular choices of f and
are important. One can specify a piecewise linear function to satisfy the condition

MOTENWITR A ARSI AU ST RECRLUWSY U U T W OOT RV TR OO P KR PO PR U =M V‘\M"ﬁ:"m)\lﬂi@@

v

TR O e PaY B8 T B8 b gt 30y 0 8% ¢4 170 8" 4% 8% §Va dla Gl "aFa a U AT T YAl VAt Vol Sl ha@ S Sat wa§ ¥ap ¢ 0 ¥

(2.28) of Lemma 4. For example, define T = L 3"™ z; as the average of the basic
variables, and let a represent a positive scalar. Set

dj, = f(zj,) = [1 - %r (2.29)

Consider the plot of dj; against z;;.

dj;

- ST
X
o

As in (2.25), we again set dj; = 1 if z;, = 0, but we now utilize the values of 7
and a to account for relatively small basic variables.
For an illustration, set a = 1 and reconsider example (2.23) with e = .1. One

sees that d3 > 0, resulting in the exclusion of column 3 from P. The feasible
direction method then achieves a greater improvement in the objective function
than the simplex method. One can also construct examples of good columns failing
the screening test and bad columns passing it. Nonetheless, this choice of f has
proven useful in practice.

We now have developed an inexpensive way to evaluate further the promise of
potential entering variables. In the next section we shall use these ideas to propose
a modified feasible direction algorithm. Later we will extend these ideas and apply
thewa to the simplex method.

- o -
- -

2.7. A Modifled Feasible Direction Method

The results of Sections 2.5 and 2.6 suggest a slightly different feasible direction
method. In particular, in light of Lemmas 3 and 4, define P* C P as follows:

oo oo

jEPif 2 <0, 2;>0, d;<0or

c;j>0,z;>0,d; >0. (2.30)

In other words, a variable remains promising only if it passes one of the screening
criteria of Section 2.6. Notice that for positive variables in P, negative values of

17

B
lépl‘ R} N0 OO0 0 Wy ™ (O T U T U P MY o T Ta® et LA L] LIPL S IS 'R, L"E h]
RUMORIOLE MMM XY ."\"'O‘b.i.o‘t‘!!'.o.0.0_"02‘“"‘\. WAy l.’.i._ At M L AT L, .‘.|" l"‘l.. l.. A _.... DN .?a'.fn‘., fo.'. ."‘. . !.' . '.|

O
NSNS

'

Figure 2-2. A Modified Feasible Direction Method

Given: a basis B and a feasible solution z for the linear program (1.1).
1. Determine the sets P and P* by (2.13) and (2.30).

If P=9, go to 10.

If P* # 0, set P= P*.

Determine the search direction q: gp = —€p, qn\p =0, g5 = A.pCs.

Determine the step length 6 :

G w0

. z;
— n J

= mi :
JEBUP:q;<0 g,

Move to a new feasible solution 7 = z + 6q.

Determine the incoming and outgoing basic variables by the rules of Section
2.4. If the procedure reveals an unbounded solution, go to 11.

Update the basis.

Goto 1.

The current solution is optimal.

Terminate the algorithm.

——
oW o

d; identify excluded columns. Recall that when a variable decreases, the negative
components of A.; become eligible for the ratio test (2.20). This change in sign

explains the different interpretation of d; when a variable decreases.

We now substitute P* for P in the previously described algorithms. The results
remain unchanged except for the termination criterion. Emptiness of P* need not
imply optimality of the current solution. Emptiness of P remains as the stopping
rule. Figure 2-2 summarizes the modified algorithm using a single search direc-
tion. The changes do not affect the theory of the reduced-gradient method, so the
algorithm attains an optimal solution if one exists.

Computational tests revealed the effectiveness of the column screening tech-
niques of Section 2.6. Different choices of the second objective function d were
examined. Each one substantially reduced the iteration counts. The best approach
discovered so far used the piecewise linear function in (2.29) with a = 10. The use
of a second search direction ¢ provided only a marginal reduction in iterations that
failed to compensate for the extra work involved. Screening out “bad” columns
emerged as the most important enhancement to the performance of this type of
algorithm.

2.8. Computational Results

We now examine some computational results. The test set consists of 12 small
to moderately sized practical prohlems available f-om the Systems Optimization
Laboratory at Stanford University. MINOS 5.1, a linear and nonlinear optimiza-
tion code developed by Murtagh and Saunders (see [33] and (34]), figured promi-
nently in the testing. The algorithm of Figure 2-2 was implemented by modifying
the appropriate subroutines of MINOS. MINOS also provided the simplex method
used in the comparisons. Identical subroutines performed many of the common
aspects of each algorithm, including input of the problems, basis factorization, and
solution of linear systems of equations. Thus, one can attribute distinctions in per-
formance to different characteristics of the algorithms, instead of inconsistencies in

18

OOV y ¥ O AU TR A XS LN Wy 1% e T G T I O R N e T S R
ICOODOBOINV KN o et e N, T . A R M R SR RN ﬁ RN \' RORPUNLY

S0 Ve (M8 Va0 Vo Vel tieavad < uf Wal é8 way s al vad i bt cat il Nald tal Spb tad $ay Soh oal tal el Sk sad Val Vel v, AT RO VU) -
LY,
Y
o
g

"3

L e ? .

Catn e e R b i Yal b g bR gt Vel TuC gV Fal et ob Cad T T bt B Rt gV Y o e 0V 0 B 8Ve 0% 5% 0Va $%0 8'5.0% 870, 8'8.0°8 8" 4" 0. 02,070 8 0t Bt 9. Q“.',.‘
)

@
b
Figure 2-3. Results for Feasible Direction Method on Unscaled Problems %:;'
th
o
ITERATIONS cRU e
o4
Problem Feas. Dir. Simplex] Feas./Simp Feas. Dir. Simplex| Feas./Simp| ’.:’
AFIRO 6 6 1.00 2.55 2.50 1.02 ..::;-
SHARE28 38| 48] 0.79 18.17 13.55 1.34 ::lf
BEACONFD 57 54 1.06 40.66 27.03 1.50 PY
CAPRI 104 114 0.91 104.87 72.27 1.45 >
BRANDY 173 118 1.4 146.53 71.42 2.05 g
ADLITTLE 109 126 0.87| 21.19 13.43 1.58 T
SHARE1B 139 169 .82 75.34 . 40.50 1.86 WY
ISRAEL 255 256 1.00 132.99 60.59 2.19 ,'L:_
BANDM 225 273 0.82 226.55 134.18 1.69 e
STAIR 207 274 0.76 440.90 251.21 1.76 ’_" ‘
ETAMACRO 261 335§ 0.78 268.83 180.22 1.49 Ny
E226 410 493 0.83 255.39 137.79 1.85 wy,
o Geom. mean: 0.91 Geom. mean: 1.62 \r{.
3
L
the implementations. S':‘
Figure 2-3 summarizes the experiments. We compare both iterations and CPU ” "
time. Iterations pertain to Phase II only; Phase I of the simplex method generated o ‘:q:
the same feasible vertex for the feasible direction and simplex methods. Time At
comparisons measure solution of the whole problem. In each case we compute the P
ratio of computational effort required by the feasible direction method to that of the e
simplex method. Ratios less than 1.0 idei.tify superior performance by the feasible '::t:f
direction method. At the bottom of the table we compute the geometric mean of e
the 12 ratios. Assuming all problems are equally important, this measures relative :-:c‘i
performance accumulated over all test problems. With respect tc iterations. the Rk
algorithm achieved moderate success. Most problems required less iterations than °
the simplex method; only BRANDY needed substantially more. However. each Bitet
iteration involves significant additional work, and the reduction in iterations failed "
to compensate for this. CPU times exceeded those of the simplex method for every "
problem. iy
What conclusions can one draw from these results? The pricing techniques poie
of Section 2.6 improve the algorithm noticeably. Iterations are usually fewer than °
those of the simplex method. This marks a significant improvement over the results R
of previous testing of this type of algorithm. Nonetheless, the approach still fails N
to compete with the simplex method on the basis of computation time, the most R
important indicator. The flexibility of the search direction and pivot rules suggests Ny
that more successful variants may exist. However, the research reported here reveals N
certain inherent difficulties with the approach. Column screening is beneficial. but
the procedures defined are not flawless; columns with small step lengths can pass the o
screening test and inhibit the step length. The likelihood of such columns slippin ...:::
through and being included amongst the promising variables is greater when |P '\::';
is large than when |P| = 1, as in the simplex method. This fact remains true o
regardless of the particular choice of search direction or pivoting strategy. In order RS
to succeed, any member of this class of algorithms must contain features designed ®
to evade this obstacle. y
o
W
19 &
N
Y

. fm AR DA VA W - T N T T R P T A T T T AT T
$ L] v - - ‘ o 3
SO, LG m'l.?'\ fahaley a'o‘.o‘ AN 00> ‘. L > \" Y o '\“ \' o .' ~ e W N N =~ '\ T

N T T T T N Y e O M L N N A A R O R A AR

2

Tl

 w
- -

CHAPTER 3: MULTIPLE-OBJECTIVE PIVOT RULES
IN THE SIMPLEX METHOD

Sl

W
'~ -

-
s

3.1. Preliminaries

The results of Chapter 2 suggest the potential of applying a two-objective
approach to the simplex method. %he simplex method tends to perform poorly on
highly degenerate linear programs, so the ability to avoid degenerate pivots may be
quite useful. Section 3.2 utilizes the results of Chapter 2 to formulate pivot rules
for the simplex method. Section 3.3 then extends these ideas. Instead of trying
to exclude certain variables, we investigate the use of a second objective function
to make good selections. Two more pivot rules arise. Further examination reveals
that these procedures attempt to estimate inexpensively the step length associated
with a potential entering variable.

Section 3.4 examines a parametric variant of the simplex method which has
performed well on highly degenerate test problems. The variant resembles the other
pivot rules of this chapter because it also utilizes a second objective function, albeit
one that remains unchanged throughout the algorithm. The similarities motivate
a new parametric algorithm that incorporates dynamic pricing. Section 3.5 then
considers the extra work required by the two-objective approach. The chapter
concludes with the development of techniques to reduce the additional computation.

P
-

-
1

3.2. Column Screening in the Simplex Method

Although motivated by feasible direction methods, Lemmas 3 and 4 apply
directly to the simplex method. Instead of choosing promising variables by (2.30),
we formulate a two-priority procedure to select the incoming variable. The following
criterion helps avoid degenerate pivots:

d~=0,

dji = I¢;. =0} t=1,...,m;

First Priority: s = argmin ¢;,
T <0,d; <0

Second Priority: s = argmin ;. (3.1)

In other words, select a variable that passes the screening test defined by Lemma
3. If none exist, use the standard selection rule. The incoming = riable always has
a negative reduced cost, and termination occurs only when all nonbasic variables
have nonnegative reduced costs. Therefore, assuming it uses a suitable technique to
resolve degeneracy, the simplex method will obtain an optimal solution in a finite
number of iterations.

Dantzig, Wolfe and Bland (see [6], [51], and Shamir [44]) proposed pivot rules
to handle degeneracy. The intent of these criteria was to establish finite behavior of
the simplex method. The nirst two rules use a very specific procedure to define the
outgoing variable, while the choice of incoming variable is arbitrary amongst those
with negative reduced cost. Bland’s rule explicitly determines both the incoming
and the outgoing variables. The pivot rule &1) provides no guarantee of conver-
gence unless accompanied by a suitable degeneracy resolution technique. To see
this, refer to Hofmann’s cycling example in [6]. Nonetheless, (3.1) differs from the

20

""n*",\‘*'d’ "‘-'\,u*'-’-wv*--- ul*v,‘
X R K

NN ! 0 e eV s ot ey W w TN NR M N - Y ST
i 'A'.‘c’.’l’.’l"‘o’.‘l‘t’l’.‘t'- AN, l’!‘l‘-’l’c.l . e R O A T R AN T T e !.. atntatatt, q..i,.,!!. e., Yyt , N

B N N T N N R O T I O R I TR T R Y S R R R e WA e W W W D WU N

other rules because it deals directly with degeneracy during the selection process.
It tries to avoid problems with degeneracy instead of resolving them after their
occurrence.

Lemma 4 and the piecewise linear function of (2.29) motivate a pivot rule
identical to (3.1). The only difference is in the choice of d:

dN = Oa
1+
d,-,.=[l—?] i=1,...,m
First Priority: s = argmin Z;,
%j <0,d; <0 _
Second Priority: s = argmin ;. (3.2)

This rule attempts to avoid small pivot steps. Once again, the simplex method
obtains an optimal solution in a finite number of iterations.

. 3.3. Estimating the Step Length

The pivot rules of the preceding section use a second reduced cost d; to avoid
poor choices of incoming variable. We now attempt to use d; to select variables with

. large step lengths. In fact, for a certain choice of d, a direct connection between d;
‘ and the step length 6; emerges.

: To begin, define d as in the previous pivot rule (3.2). Consider the following
three-tiered pivot rule:

2 First Priority: s = argmin ¢j,
¢; <0,d; =0
[Second Priority: s = argmax ¢;d;,
K %j <0,d; <0
. . .G
L Third Priority: s = argmin =L. (3.3)
K g; <0,d; >0 d;

What motivates such a rule? The value of d; provides information on the com-
ponents of A.; that correspond in the simplex method ratio test (2.24) to basic
variables smaller than T/a. Lemma 4 establishes the undesirability of nonbasic
variables with positive values of d;. Larger positive values are even worse since

they imply the presence of either more positive components of 4.; or a few large
: positive components. Each of these occurences suggests a small step length. If
d; > 0, use the ratio ¢;/d; to incorporate information from both reduced costs. Vo
This approach balances the good aspects of more negative values of ; with the 3

unfavorable aspects of large positive values of d;. Similarly, negative values of d;
suggest the prevalence of negative values in the components of A.; involved in the
ratio test. Only positive components of 4.; can bound 6;, so nonbasic variables
with more negative values of d; are less likely to have small step lengths. The quan-
; tity E]Ej estimates the improvement in the objective function if z; enters the basis.
X Why should variables with d; = 0 receive top priority? The particular choice of d

e e A v

21

T

t ’ L LA LT LAY (W ; P AT AP A Y NP PRI Celele Pl g " LES AN U ACTREN L
t‘.l'c‘l'.!i'v‘i -.l" l‘l"‘l fin ._‘l'o.l. Wiy SR 4" AP A "' *‘..(A ' -‘ 4 wily . LN o N “" " \'A' o I-‘P g OV, 90,4

in (3.2) motivates this distinction. Note that one determines d, independently of
A;. Since dj = dfA;, and dj, = 0 if z;, > F/a, one anticipates that if d; = 0,
then, in practice, 4; ; = 0 for i : d;, > 0. If so, none of these smaller basic variables
bounds §;. A large step length then becomes likely.

The previous pivot rule attempts to estimate the step length associated with
z; based on the value of d;. Many other functions of the basic variables besides the
piecewise linear one of e$3.2 and (3.3) may yield helpful information about §;. How

ul

does one determine us unctions? Theorem 1 provides insight into this question
by establishing a direct relation between d; and 6; for a suitable choice of f.

Theorem 1. Assume z; > 0, and set dy = 0 and dj; = 1/z;;, fori = 1,...,m.
For some j € N, let
r = argmin =2
i:I.‘,,' >0 ‘2i,)
Then,
- 1 71-,' i
3=+ Aij, .
! 6; * -—Z Zj; (34)
i:A; ; #0
i¥r

Proof. In order to prove the theorem we show that 0;‘ is a term of the summation

that comprises d;. Note that r identifies the component of the basis indexing the
variable that would depart the basis if z; was chosen as entering variable. With
this in mind,

0_,' = min i"—' = f.j'
iAd; ;>0 Aij Ar;
oL An (3.5)
6, zj

Now, compute d; by its definition and extract §;' from the resulting summation:

il
M ;
8 |£§_>|

dj = dyA,

i
s M
8 I::hl

Notice that (3.5) implies that

l>h
0,-‘::,-.

1=1,...,m.

Therefore, the reciprocal of §; contributes the largest positive element to the sum
comprising d;. One can use d; to estimate ;. Smaller values of §; imply larger

values of its reciprocal. Once again, negative values of d; suggest relatively large
step lengths. Clearly, the term

A.,.
3

Y=
i:Z.',,' #0)
i#r

may drastically distort this estimate. Nonetheless, in practice the canonical columns
A.; tend to be fairly sparse, reducing the number of terms in the summation com-

prising 7;. More importantly, 3j need only accurately estimate the size of §; relative
to the step lengths associated with other potential entering variables. As long as

the values of v; remain reasonably well behaved across all nonbasic variables, d;
will yield useful information about the relative sizes of the step lengths. In practice
the assumption that z;, > 0 is unacceptable since virtually all practical problems
exhibit degeneracy. In order to avoid this difficulty, let € > 0 represent a suitably
small tolerance and set d;; = €' if z;, < e. We can now formulate a pivot rule
similar to (3.3):

First Priority: s = argmax €;d;,
;j<0,d; <0

Second Priority: s = argmin 2 (3.6)
;<0,d; >0 &j

One can view this rule as an attempt to estimate cheaply the prohibitively expensive
rule of maximizing the improvement in the objective function:

s = argminEjGj. (3.7)
J:¢; <0

This procedure requires a solution of a system of equations and a ratio test for
each nonbasic variable with negative reduced cost. Contrast this with (3.6), which
requires only one additional solve. One could propose many other functions to define
dp. Regardless of the particular choice, Theorem 1 reveals the essential idea behind
it. Explicit computation of ; for many nonbasic variables is hopelessly expensive
(in a sequential computing environment), but the solution of a single system of
linear equations can provide an inexpensive estimate of its value.

In [20] Kalan proposes a more elaborate version of (3.6) involving two ex-
tra pricing operations instead of one. Kalan’s rule should provide more accurate
information about selecting a good entering variable, but it also requires more com-
putation time than (3.6). In [47] Todd motivates a pivot rule similar to (3.6) from
the framework of an interior method for linear programming. To see the connection,

23

note that the components of d specified in Theorem 1 are precisely the components
of the gradient of the logarithmic barrier function y |~ Inz;,.

=1

3.4. Parametric Variants of the Simplex Method

The pivot rule (3.1) helps the simplex method avoid degenerate pivots. One
expects this rule to perform well on highly degenerate problems. We now consider
other pivot rules having nice properties with respect to degeneracy. The parametric
simplex method proposed by Gass and Saaty (see [13]) provides a framework. Refer
to Dantzig [7) for additional details. The parametnic method does not select columns
in order to avoid degenerate pivots, but it makes progress reducing dual infeasibility
even when a decrease in the primal objective value is stalled by degeneracy. We
consider a special case of the algorithm of Gass and Saaty. We provide a slightly
different proof of convergence because of its applicability to an extension of the
algorithm that incorporates dynamic pricing.

Consider a linear program of the form (11.1) with a parametric objective function
(cT + 0dT)z. Assume a feasible basis B,; let N, index the corresponding nonbasic
columns. Initialize the parametric cost row d as follows:

dBO = 0,
dj =||A;llz for j € N,. (3.8)

Actually, we only require that d; > 0 for j € N, to prove convergence. However, the
particular choice (3.8) ensures that the forthcoming pivot rule remains invariant un-
der column scaling. Associated with B, are the current values of the dual variables
7, = cp B! and the current reduced costs Ty, = c§ — 77 A.y,. The algorithm
initializes 8 at a sufficiently large value so that the parametric objective function
Tno(0) = Ty, + 0dy, > 0. 0 then decreases until it attains some value §' where a
component of ¢y (#) attains zero. In other words, the current solution is optimal
for the parameterized linear program provided that § > 6'. The component that
equals zero identifies the entering basic variable. A ratio test defines this selection
procedure. Assume no ties occur during this test. The usual simplex method ra-
tio test then determines the outgoing basic variable; one can break ties arbitrarily.
Pivot as usual, generating a new parametric objective function &y, () = &y, +du, 6.
To calculate the parametric reduced costs dy, , observe that d is a second objective
vector. Compute o7 = d} By', and then set c_i',r,,1 = dy, — o] A.n,. Note that for

the initial basis B,, d; = dj. We now repeat the pivot procedure. We shall see that,
provided that there exists a unique choice of incoming variable, § decreases strictly
during each iteration. The parametric objective function € (6) remains nonnegative
throughout the algorithm; the basis is optimal for the linear program (1.1) wien 0
attains zero.

Figure 3-1 summarizes the algorithm. Theorem 2 establishes convergence. As-
sume an optimal solution exists.

Theorem 2. Provided there exists a unique choice of incoming variable during ev-
ery iteration, the parametric algorithm of Figure 3-1 determines an optimal solution
in a finite number of iterations.

Proof. We use induction to show that the sequence of parametric values 6%, 6!,
62,... generated by the algorithm decreases strictly during each iteration. This,
combined with the fact that each basis corresponds to a unique value of 8, assures

24

Ve

|
e
3
STy

R
3

\
s

§

L
0

N N R O T Y Y T T N R T O R TOU O TR P AR AR A K Y P SAY 04° 6" 0a" R ats afa gt ata o¥h gti- i~

Figure 3-1. Summary of the Parametric Algorithm

" Given: An initial feasible basis B = B,; N = N, indexes the corresponding non-
basic columns.
1. Initialize parametric cost row d. Set dg, = 0 and d; = ||A.||; for j € N,.

2. Set 6 sufficiently large so that €y,(8) = Tx, + d~°0 > 0. Note that d; = d;
during the first iteration.
(Iterative Loop)
' 3. Decrease 6 until

5 3s5:¢,+6d,=0, & +6d; >0 for j € N/s. (3.9)

Assume such an s exists. Use the following ratio test to determine s:

a.
8 = argmax — =-, (3.10)
pg<o dj

Let 8 be the corresponding maximum. If § = 0, go to 8.

4. Given z,, determine the outgoing variable z; by the usual simplex method
' ratio test. Ties may be broken arbitrarily. Ii' the test reveals an unbounded
K solution, go to 9.
. A, replaces A.; as the r** column of the basis. Update the current feasible
solution as in tfxe standard simplex method.
Calculate ¢ and d for the new basis.
Go to 3.
Optimal solution found.
Terminate algorithm.

o

LN

¥
)
§
5
44
)
)
3
M
v »
{
Ly
K 25
A

L)
v. ‘l
. ¥
3 Y
K) e iP MW I3V '8 1 . NEE A e] ; - wym . 3 AT L WM Y L
Wi AT S Do T D -J‘l .l't .,t‘ .‘o. Y "‘ "‘ ﬂ‘ "n g l.t.' o, '."- Pttt d N R MR ARGV

2w 2

-
A -

NP S

-_»
",

nl
s

1,

K ‘ € ¥ My P 7 01 AL A A A SRRV
»"1’;",«" n"..(#:ﬁ.i.t Al X S Dt A Pl .l"«"‘." Ly :"o‘. n’.‘-‘ o ’ ‘- i

M3 G Wk G d e U R G40 b B R 0 I W B N T 8 N TR e e i ek g Ph Tl Val 3 U va g Ut g T W R Ret F W o G2l W B SR B

convergence. Consider the first iteration. Initially, 8 = 6° is such that Ty, +03~° > 0.
We then determine

g
6' = max —=.
):¢; <0 dJ

Since d; = d; = ||A.j|l2 > 0, it follows (see Figure 3-1) from (3.7) and (3.8) that
6' < 8°. A strict decrease occurs during the first iteration; now consider iteration
k-1 Let ! and d represent the reduced costs of ¢ and d at the start of
iteration k — 1. Similarly, let @%~" represent element (i, j) of the matrix 4 in the
canonical form (1.2). #*~! represents the value of 8 generated by the ratio test (3.8)

during iteration k — 1. By the induction hypothesis, 8° > 6! > ... > 8*~! and

3s: e+ 0"_13:-1 =0,

146417 >0, jEN s, (3.11)

Note that z, replaces z;_ in the basis. The pivot element is then @*~! > 0. Perform
the pivot and examine the resulting reduced costs for iteration k:

1 1 !
— xk—=1 _ wk—1%s |
z; - zf afi k-1’
rs
—k-1
=k _ -1 =k—1 da
dJ' - 3: —a,; 1

Multiply d; by 6¥~1 and add to z¥:

-1

] ~

- k-1 a7t ke
o+ 64T = 4 4T - S (B T

S

=0 by (3.11)

=g 1+ 0""‘25—1 > 0.

The last inequality follows from (3.11). Since &} + 0"‘13; > 0 and 6%~ > 0, it
follows that - .
¢ <0=>d; >0 (3.12)

Unless the current basis is optimal, (3.12) guarantees at least one potential pivot
i .
column satisfying (3.11). Also, observe that since E;‘ + Gk‘ld]- > 0, a nonbasic

column 3§ such that & > 0 and 3: < 0 cannot satisfy (3.11) for 6 < 6*~!. Hence,
we only need consider j € N : &; < 0 as candidates to index the entering variable.
This validates the ratio test (3.10). We can now show that * < 8¥~1. Since
Ef + 0"‘13; > 0, (3.12) implies the existence of §* and § such that 8% < 61,

ek + 0"2: = 0, and Ef + 0"3_’: > 0. To determine 8% and §, we choose 8% as the

26

e A A A PR A A A AL A L AT
A N A N T s

-

6
]
]
{
]

A%r

7y &
MO

et + 6*d; > 0. To determine 6* and §, we choose 6* as the smallest possible value
that satisfies the condition

E;‘+0"3;20 for ;: E§<0, 2;>0

@tfz—aaj forj: e <0
o
#02—%— forj:3f<0

e 2
¢ 6= max —, ands:a;gma.x—?
3¢5 <0 dj 3T <0 j

Thus, the ratio test (3.10) determines 3 and 6* < §*~! < ... < 8! < 6°. Remember
that we have assumed no ties occur in this test. A unique value of corresponds
to each basis since the ratio test involves € and d. Therefore, a basis cannot repeat
itself during the algorithm. This completes the inductive proof. e

Theorem 2 assumes that no ties occur during the ratio test (3.10). A random
perturbation of the initial values of dy, validates this assumption with probability
one.

The values of § generated during the parametric algorithm provide a measure
of the level of dual infeasibility. Even when stalling (a long sequence of degenerate
pivots) occurs in the primal, the algorithm progresses in the dua(i. This suggests that
the method will perform well in the presence of degeneracy. The screening criterion
(3.1) works in the primal; it tries to avoid degenerate pivots and, hence, stalling
by using a second objective function d. The parametric algorithm also utilizes a
second objective function, albeit a constant one. From the perspective of the primal,
however, no features of this second obj-tive appear to help it avoid degenerate
pivots. As we shall see, (3.1) reduces the percentage of degenerate pivots, while
the parametric algorithm does not. Nonetheless, computational tests in Chapter 4
reveal the effectiveness of both methods on highly degenerate problems.

The inability of the parametric algorithm to avoid degenerate pivots suggests
the potential of a variant that can avoid degenerate pivots while still decreasing 6
during each iteration. Unfortunately, the parametric algorithm lacks the freedom
to choose the incoming variable. 8 need not decrease unless the ratio test (3.10)
determines the incoming variable. However, provided that one initializes d; > 0
for j € N,, 0 decreases monotonically under the parametric pivot rule. Since the
algorithm generates a sequence of feasible bases, one can reinitialize the parametric
objective at any iteration. We shall use this fact to formulate a modified paramet-
ric algorithm that screens for degenerate pivots without sacrificing the monotonic
decrease of 0.

Let us begin by defining some additional notation. Let d'! and d? represent the

. . < . . =2 .
parametric and dynamic objectives, respectively. Let d' and & be the corresponding
reduced costs. Consider any iteration. As before, s indexes the entering variable

chosen by the parametric algorithm: . ;:
Z v
s = argmax ——%. (3.13) e
j:Ej <0 dJ ::,.:
T
Again, assume $ is unique. If 33 > 0, Lemma 3 implies the resulting pivot will be ;
degenerate. Let g index the variable that maximizes the ratio in (3.13) while also “
() i
)
27 o
gl
]

10 00, 01, T Tp, Vg W9y N0y 1Oy (¥ O T R 2ROt A L € L N S s T TN DT A T o -
AN “‘.‘A,‘\’.'o“‘n‘!‘n‘«.- 1K -'A'»‘Q'-‘t al.i‘-‘l Al SOV RS " WAV IR v‘fl!.l.‘ (X Yy 0040, E L 00 8, & nl. I'o (o M l‘..'.‘n'!‘u'l.:l ..!

RS TR Y IONTOY LYY YY RANELRACAR NI PN KARKRE AN D IR v ae @27 g0t itn Na al8 a'k &' 2% 2t &° Q"
i

| &
| 4
| »
o
:.':
passing the screening criterion of (3.1): :E:
W
Ej »
q¢ = argmax - (314) ~¥)
5 <0,<0 d; i
2:¢j 6 = b ::':
)
o
Assume that during all previous iterations ¢ = s. In other words, the entering ::::
variable was always a valid choice under the parametric algorithm; hence 8 decreased -
during each iteration. Suppose at the current iteration q # s. Then, since ¢ does o
not maximize the ratio in (3.13), !
o
, c
- >-= (3.15) W
d, dq A3
b
We wish to reinitialize the parametric objective vector so that ¢ indexes a legiti- ':::
mate entering column with respect to the parametric algorithm. In order to do so, A
determine § > 0 such that ' ::::
e
—g‘ < —-—EL—. ;l'
d, -6 o
)
The following lemmas motivate the proper selection of §. ::::
Y
Lemma 5.) .
gd, — %, d, O
— < d,. ’
(oA b
.l
Proof. Suppose the contrary: ::.:
1 -1 b
E,aq - Eqd’ > a—l ! :
= “¢ ;
G)
T
Remember that all previous pivots were valid under the parametric algorithm. All !
properties of the algorithm remain true, so by (3.12), ¢, < 0 and 31 > 0. Subtracting "
=1 . . .
d, from both sides of the last inequality, A3
. 0
1 1 -1 A
¢,d, —¢,d, - ,d, S 4
- 2 !
-] S
N _d, >0 S
g, -~ a
1 03
= -¢,d, <0. 5%
-1 b
But d, > 0 and ¢, < 0, establishing a contradiction. e
28

Lemma 6.

e,d, - 2,d,

z > 0.

=5,d, ~%d, <0 (recall that %, < 0)

A >0. o
Lemma 7.
36> a,a;% such that
B ;_; < _Z‘-i 5

C,d, — C,d =1
17 <d,
Cs
Therefore,
=1 -1

d - 2,d _
36> =01 such that 3, > 6.

Note that 3,1, —§ > 0. Multiplying (3.17) by &, < 0 reveals that

1

2,6 < %,d, - %,d,
= —7,(d, - 6) < —%,d, (recall that d, > 0)
(o} C,
S —g <. e
PR

jective vector so that z, enters the basis instead of z,.

29

Proof. Since s # ¢, use (3.15) along with the fact that 3: and d, are positive:

(3.16)

(3.17)

Given these lemmas, Theorem 3 shows how to reinitialize the parametric ob-

-

-~

_ Ay ! ot e P LA L R A M DY
Al IO !-“?-’l,0":;!‘;".0}!!‘.‘.0_‘) fﬂ,vl! AR (N o.n, » '”\ VAR .0.-

g bah ad Ch ot Y el oab g Wl Vel Uk Al o B Vel Tad a0 el Sa® NiR B NLE VR L ATELR Hal ok 0D B VoD ek Wad'Oed’ MAN TR RN

Theorem 3. Assume the standard parametric ratio test (3.13) determines a unique
entering variable during the first k — 1 iterations of the parametric algorithm. Sup-
pose that g # s at iteration k, and the parametric objective vector d! is replaced
by the following vector d*:

& =0

&= -6

#=3; forjeN:T <0, j#q

di=d} forjeN:%>0. (3.18)

Then 3 § such that ¢ indexes a valid choice of pivot column for the parametric
algorithm.

Proof. To prove the theorem, we must show:

(i) that &® is a legitimate choice of initial vector for the standard parametric
algorithm.
(12) that the algorithm will select z, to enter the basis, i.e.

E.
q = argmax — -,
J:T; <0 §

(17) that the value of the parameter 8% < %1,

Let B and N index the basic and nonbasic variables of iteration k. Consider
d®. By Lemmas 6 and 7, 3 § > 0 satisfying (3.16) such that d} = Z: -6 > 0. By
property (3.12) of the parametric algorithm, E; > 0 for j : T; < 0. Furthermore,
d; = |l4jliz > 0. Hence &% > 0 for j € N, so d® is a legitimate initial vector for the
parametric algorithm. This establishes (z).

Now consider the new parametric reduced costs d’. Since & =0, of =
(&3)"B~1 =0, so 3: =d} — 0§ Aj = d?. Using Lemma 7 and (3.18),

G % B _ T
& d,-s§ 4 4

z T o - .
__;_>——‘;=—3—13- fOr]:cj<07.7¢q'
d, d; j

Combining inequalities,

C, C; .- .
:3q>__:3.1_ forj:T; <0, 5#4¢.
d, d;

30

LIS 1 20 B0 BN Yd) ~ I "’
nt. .,‘0» W, 4%, ,'\.!'Q.I- A -’ %

Sa il Ry i M

Ul 0ai 0,0 6.0 80,0008 8,0 * .}

3

o) 0
(Y Y,
': M Mo v‘-‘u"‘o‘?‘u..' o

- . s

-

P ARl

Sl g PR 4

§Tp 70 3% p 6% 97 879 870 900 @' $%0. 6% 8% 073 875,074 870 870 0 5 0 9.8 2 079 85 420 8 00F B0 9.0 (0 AR 0.0 5t §2° Wa® 027 8a" Ba? 0a¥ 00" ot ubsa¥s"rbe e’ abn a0y’ e’

In other words,

E.
¢ = argmax — —x.
J:&; <0 ?J

This establishes (t1).
All that remains is to show that the parameter decreases when z, enters the

basis. Let 6% represent the value of the parameter at iteration k determined by the
normal parametric pivot rule (3.13). In other words,

Similarly, define 0: as the parameter associated with entering z, into the basis after
reinitializing the parametric objective row:

Using Lemma 7, we see that

1 1
5= z,d, - z,d,

+ ¢,
Cs

where € € (0,€) for some € > (. Substituting the last equation into the previous
one,
_Eq
S =1 g
d, - ((B,dq - a,d,)/z,) —c

_E‘Eq

@ d - &)/ T, (31 — €, /6,,)

=—_——>0".
d -e /5,
S N

>0 >0

The last inequality holds since 8* = —z,/d.. Although s > 6} = —z,/d,, note
that (8% — 6F) can be made arbitrarily small with a suitable choice of . Recall that
6% < 6*! because all previous iterations have obeyed the normal parametric pivot
rule. It follows that 3 e sufficiently small so that 6; < 6*~'. Thus, the parameter

decreases by a positive amount, proving (iii). We have established that, with a
suitable choice of €, ¢ is the proper column selection for the parametric algorithm
with parametric objective function d3. e

Given the results of Theorem 2, Theorem 3 shows that the modified paramet-
ric algorithm summarized in Figure 3-2 terminates in a finite number of iterations

- - - - A
__\ Y \"\ LYY

Ty

-

- -
- -

L 4

do X

*PLOED.

e

"

)
!
Y
’.n H
"
t
W,
1
L
w
>
\J‘:‘r“"r :

DTIWURY

R ORI AR O O T AN O Ow AR IR AN N I I I N N I N NN Y uN)0y’

Figure 3-2. Summary of a Modified Parametric Algorithm

Given: An initial feasible basis B = B,; N = N, indexes the corresponding non-
basic columns.

1.
2.

3.
4.

5.

12.
13.

Initialize parametric cost row d'. Set dj, =0 and d; = ||A.||> for j € N,.
Set 8 sufficiently large so that Zv,(8) = &y, + dn,8 > 0.

(Iterative Loop)
Determine s and g by the ratio tests (3.13) and (3.14). If § = 0, go to 12.
Ifs=gq,goto9.
Since s # ¢, reinitialize d'. Determine € > 0 such that

-z,

= < k1,
d, - &, /2,
Set » o
_5d -4,
6= z, + €
for € € (0,%) so that
1 1
- ¢,d, —¢,d
d; >f> 4 92
Cs
Reinitialize d! as follows:
d}, «—0
d—d, -6
d;w—(-i; forj:2;<0,j#¢
dj «d; forj:z;>0.

Variable z, enters the basis. Go to 10.
Variable z, enters the basis.

. Determine the pivot row by the standard simplex method ratio test. If the test

reveals an unbounded solution, go to 13.

. Pivot and update the basis. Update the current feasible solution. Compute &,

d', and & for the new basi~ Jo to 3.
Optimal solution found.
Terminate algorithm.

)
DOOANOGOOC0Y C
e .'u‘.‘x‘.‘-‘!’.‘.. !'t‘l..\i'-

32

-

T T e T e el e e AL

.....

L

WO, o
Y R,

vt

OO

" '
g
é
g
]

™
b

e

- x sy -

ot 2¥, ';:f

AT

a0 Rt 0t 1 ikt 6Tk A VR R ER T e e (aVa st ¥a" et Uat Ut 0a¥ ety Bat BaP ta” ¥ Seb $av §20 Rt Gab 2% $a® $a® B2 10 Ret Rat gat BT RaV R0t 0.0 08 0.8 00 009 RO AT §o0 A8y 1

i
2
%
4
if accompanied by a suitable degeneracy resolution technique. The algorithm ini- .
tializes the parametric objective vector in the normal way and proceeds with the At
standard parametric method until a pivot selection s fails the screening criterion)
(3.1). At this point a feasible basis exists, so we reinitialize the parametric vector 2
so that z, enters the basis instead of z,. Lemmas 5-7 and Theorem 3 describe the u:::n'
reinitialization procedure and show that the parameter still decreases. |=.:
Note that the modified algorithm requires a degeneracy resolution technique to X
guarantee convergence while the original one does not. This distinction arises be- ahy,
cause the modified algorithm alters the parametric objective function, whereas the
parametric objective of the original one remains unchanged. It therefore becomes o
conceivable that a basis could repeat itself where the parametric objective has dou- .::c:
bled and the parameter has halved (see [48]). In this instance the parameter would Wy
decrease at each iteration yet never attain zero. If accompanied by a degeneracy ".:;
resolver, the modified algorithm will terminate in a finite number of iterations since A
it always selects variables with negative reduced costs to enter the basis. o
Each iteration of the modified parametric algorithm requires computation of o
two extra vectors of reduced costs. Also, the reinitialization procedure (3.18) in- oy
volves some more work. The total additional computation exceeds that of any of the gl
previously described pivot rules. Nonetheless, the approach incorporates the bene- W
ficial characteristics of the parametric method and pivot rule (3.1). It progresses in !
the dual during stalls in the primal, but it also attempts to avoid such stalls. °
9t
X
t)
. oot . A
3.5. Reduction of the Additional Computation ~
!
All of the previously described pivot rules compute reduced costs on a second 'm
objective vector d. In the context of the revised simplex method, one must determine ®
dp, solve an extra system of equations iaty!
[
o"B =dl, (3.19) ‘
N
and then calculate reduced costs d; for j : €; < 0. Although not prohibitively expen- RO
sive, these steps comprise a signiécant fraction of the time required for a simplex 2
method iteration. In this section we explore techniques to reduce the additional o
work.
An opportunity to save time arises during the solution of the system of equa- v
tions 83.19). Notice the similarity between solving for ¢ and solving for the dual o
variables : L
7TB =cl. (3.20) D
O
One should solve (3.19) and (3.20) simultaneously. One could call a subroutine ::t._
twice: e
CALL SOLVE(, cg,...) 3
<additional code> \.‘
W v
CALL SOLVE(o,ds,. . .). 5
v,
Assuming an LU factorization represents B, each call involves solving the linear e
system wT B = 2T which in turn requires solving the linear systems ‘%\
yTU = 27 o
]
w'L =y7. ! ::
o
33 W,
) §
:: Y

™ ;w .y gw Tt s L e " P N AT RT AT R LT AR M P R R a- .

.. -
L T M

P S N N S S I O N U S T X R O A R O O o O O OO OO oo o)

Thus each subroutine call must access the array containing the nonzeros of the
lower triangular matrix L and the upper triangular matrix U. Instead, suppose one
modifies the subroutine so it computes 7 and o during the same call:

CALL SOLVE(~®,0,cp,dg,...).

This approach requires only one access of the array containing the factorization of
the basis B and may theretore reduce the computation time involved.

In certain situations, the extra solve (3.19) becomes unnecessary. In particular
we will demonstrate how to update o for the pivot rules (3.1), (3.2), (3.3), and (3.6)
provided that a degenerate pivot occurred during the previous iteration. We shall
also see that one can always skip the extra solve for a parametric objective vector.
Again, e, denotes a unit column vector with a one in the r** component.

Theorem 4. Let B, 7, and o, represent the basis, dual variables, and secord

objective multipliers during iteration k. Let @,,, ¢;, and Eﬂ be the pivot element,
at the second objective

reduced costs and second objective reduced costs. Suppose t
vector d changes by only one component after iteration k:

ds,,, =ds, +per, p€ R (3.21)
Then

p— UI(A" - A'jr){

Ok+1 =0k + Z (7841 — Tk)- (3.22)
8

Proof. To prove the theorem we exploit the similarity between the linear systems
(3.19) and (3.20) when (3.21) holds. Note that &, < 0 and @,, > 0, so all of the
quotients formed in the proof remain well defined.

Let s and j, index the incoming and outgoing basic variables, respectively,
during iteration k. Then,

Biy1 =By + (A, — A,)er. (3.23)

Let u = (A.,, — A.;,), and suppose v solves the linear system
v By = ef. (3.24)
In other words, v™ contains the r** row of B, !. Observe from (3.23) and (3.24)

that
Biy1 = (I + uv™)By. (3.25)

Since 0§, Bx+1 = dy, and dg, = dp, + pe,, substituting for Bi4, asin (3.25)

implies that

k41

ore1({ +uv™)B, = dp, + per
by (3.19) by (3.24)
—— S
= ofBx +pv” By
20, (I+uwT)=0f +pv". (3.26)

Now, proceed similarly to derive an analogous expression for 7. First of all, note
that

Co,py = Cs, + (cs — cj,)er.

PP RN SO R A N O R T N M M M MY

4o tababa v fa% a0 gan gut B0t 8 eabp d g ¥

Since 7{,, Bxyy = CB,,, it follows from (3.25) that
Tew (I +uv™)By = cg, +(cs —cj, Jey
= 7B + (¢, — ¢;,)v" By
= T (I +wT) =7f + (¢, —¢j, Jo7. (3.27)
Rearranging (3.26) and (3.27),
Tk+1 — 0k = (P — oL pu)v”, (3.28)
Tie1 — Tx = ((€s = ¢j.) = Ty u)v”. (3.29)
Substituting (3.29) into (3.28),
(P~ 0k41¥) T Ty
Tee1 — T) 3.30
(O (330

We shall later verify that the denominator in this expression cannot equal zero. We
must now derive expressions for o, u and 7, u. Begin by multiplying both sides

of (3.28) by u:

T T
Ok+1 — % =

ofu—ofu=(p—of,uvTu
Rearranging,
ofs1(u+uvTu) = pvTu + oju
= 0 u(l +v7u) = pvTu+ ofu
pvTu +ofu

m. (3.31)

a4 T

Note that vTu = eTB;'(A, — A.;,) = §,, — 1, so the denominator in (3.31) is
nonzero. Proceed similarly to derive n{_,u:

Tt —mpu = ((co —cj,) — T u)vu
= i u(l+vTu) = (¢, —¢j, v u + wfu
(co —cj)vTu+miu
(14 vTu)
Consider the denominator in (3.30). Remember that s and j, index nonbasic and

basic variables respectively at the start of iteration k. Substituting the value of
7¢, ¢ from (3.32) and regrouping under a common denominator,

2 M U= (3.32)

aimilify
'((c, —¢,)1 +vTu) = (¢, — ¢y,)vTu)‘—vr{u
(1+vTu)
—
_(ea—cj)—mi(As—4;,)
B (1+vTu)

(cs —¢j,) = Tgp 8 =

<,
A A

_ (o= mfAS) = (cj, — ™} Aj,)
(14 vTu)

T (14 vTu)

35

B A W SR S T T, L Y U WG .
N N A N NN A A

-

P

N 5

T v.
=" -t

N W

- ar dm

T T S R Y S R T o R R T S T T 7 W W W U WU WU W U WU MW S WL MU W WL WO WA

Thus, the denominator is indeed nonzero. Apply the same logic to the numerator
of (3.30) by using (3.31):

p(1 +vTu) — (pvTu + ofu)

— T —
P~ Tkt (14 vTu)
_ p—oju
= T3ora) (3.34)
Substituting (3.33) and (3.34) into (3.30) and rearranging,
-0 (A, — A,
Tkl =af+p k(.c.: 2)("{-H_"{)' .

The implications of Theorem 4 depend on the particular choice of second ob-
jective. For any of the pivot rules utilizing dynamic pricing, the result reduces
computation time whenever a degenerate pivot occurs. In this case the values of
the basic variables do not change between successive iterations; the simplex method
merely exchanges two variables that equal zero. Therefore, dp,,, = dp,, Which im-

plies that p = 0. Note that oA, = d,, and, since 07 B = dF, ofA.j, = d;,. The
result of Theorem 4 simplifies to

(ds - d;,)
°§+1=‘7: z = (”k+1‘7"k)
L.}
In order to perform the computational tests, it was necessary to handle bounded
variables. In this case a degenerate pivot may occur when the value of the incoming
basic variable differs from that of the outgoing one. Hence, dp, ,, = dg, +pey, where
p # 0; Theorem 4 still holds. For details about the different values of p generated
by the various types of degenerate pivots, refer to the appendix.
Let us now consider parametric algorithms. In this case

oru=0fA,—0iA,,
= S_da + o} ._,2-{- (d;, — U{A.j,2+d, —d;,

Ve -

-4, 0
=d, - (d, + d;,).
Also, regardless of whether a degenerate pivot occurs,
ds,,, = ds, +(ds = dj, Jer,
sop=d,— dj,. Substituting for p and o} u into the result of Theorem 4 yields

d
T T s T T
8

Therefore, despite the existence of the second objective, one never need perform an
extra solve during the parametric algorithm. Instead we merely update the vector
o. The same conclusion applies to any variant of the simplex method that utilizes
two constant objective vectors and computes a pair of reduced costs. One could
also avoid the extra solve by maintaining a pair of vectors for the reduced costs,
but that approach requires extra storage and extra array references, and it is not
amenable to partial pricing.

- meps

CHAPTER 4: COMPUTATIONAL RESULTS

4.1. Preliminaries

The author tested the previously discussed pivot rules on a set of 62 practical
problems, 53 of which are publicly available. Problem sizes (excluding slacks) range
from small (28 x 32) to large (2263 x 9799). The simplex method solved some
of these problems quite efficiently but had great difficulty with others. A heuristic
measure of its performance is the ratio of iterations required to the number of rows
in the constraints. If this ratio exceeds 5.0, one can consider the problem difficult.

The problems were partitioned into different sets in an attempt to distinguish
certain characteristics. The KETRON set, the only proprietary problems tested,
consists of nine highly degenerate problems. Degenerate pivots occurred during at
least 30 percent of the iterations for each problem when solved by the standard sim-
plex method; sometimes the percentage exceeded 80. The PILOT set contains four
linear programs generated by variants of the PILOT model. A large-scale economic
model, PILOT uses various units of measurement of the activity levels and input-
output items between the many different sectors of the economy. These conversions
of units have resulted in notoriously poor scaling of the constraints. Although all
four problems arise from the same model, examination of the structure of each prob-
lem (see [27]) reveals substantial differences. A collection of 14 staircase problems
comprises the STAIRCASE set. The STANFORD set consists of the 12 problems
used in Chapter 2 to test the modified feasible direction method. The fifth group,
labeled the SHIP set, contains six related problems. Unfortunately, the author has
no details on them. The remaining 17 problems form the MISCELLANEOQOUS set.
In general, these problems lack any known categorizable features.

As with the tests of Chapter 2, the author modified MINOS 5.1 in order to
implement the desired pivot rules. The primary changes occurred in the pricing rou-
tine that determines the incoming column. All other aspects of the simplex method
remained unchanged. Once again, one can attribute distinctions in performance to
differences in the pivot rules, not inconsistencies in the implementations.

Figure 4-1 lists the test sets and problem sizes. MINOS contains an option that
scales a problem before commencing the simplex method. Since scaling may dras-
tically alter performance, both scaled and unscaled problems were tested. Partial
pricing was not used.

4.2. Screening for Degenerate Pivots

We begin with the results for pivot rule (3.1). Recall that this rule screens
columns in an attempt to avoid degenerate pivots. We therefore label the rule as
the “Degeneracy Screen” in the following figures. Figure 4-2 displays the results
for unscaled problems. We compare both iterations and CPU time with the stan-
dard simplex method of MINOS 5.1. Note that MINOS 5.1 contains an anti-cycling
procedure designed to both prevent cycling and improve performance. Iteration
counts reveal i? the information provided by the second objective function is use-
ful; the times determine if that information is worth the extra work. Also shown
is the geometric mean of the resulting ratios for each test set; it appears in the
boxes directly below each test set. Assuming all problems are equally important
(perhaps an unrealistic assumption given the disparity in the size and difficulty of
each problem), it measures relative performance of the new pivot rule for each test
set. Values less than 1.0 imply superior performance of the new rule.

37

The Degeneracy Screen performed quite well on the KETRON set. This is
not surprising, given that the rule is explicitly designed to avoid degenerate pivots.
It substantially reduced both iterations and time on most of these problems. It
performed exceptionally well on the larger, more difficult problems. The new pivot
rule also succeeded on three of the four problems in the PILOT set. PILOTS, the
unsuccessful problem, causes only 3 percent degenerate pivots when solved by the
standard simplex method. It is therefore not surprising that, with respect to time,
the Degeneracy Screen failed to outperform the regular pivot rule on that problem.
The new pivot rule consistently reduced the iteration counts on the STAIRCASE
set as well. However, on many problems, the decrease in iterations didn’t quite
compensate for the extra work per iteration. On the basis of CPU time the two
pivot rules performed similarly on this set. Slightly worse results occurred with
the STANFORD set, as only a slight overall reduction in iterations occurred. The
STANFORD set includes ISRAEL, which caused the most trouble for the new rule.
Test results on the SHIP set were consistently unfavorable with respect to both
iterations and time. One should note, however, that, given the problem sizes, the
standard pivot rule performs extremely well on these problems, so pivot rule (3.1)
also solves them quite efficiently. (3.1) consistently decreases the iteration counts
of the MISCELLANEQUS set, but it doesn’t quite break even in terms of time.
We again encounter many problems where time increases despite a decrease in
iterations. Notice that it performs extremely well on the problem FFFFF800.

Since the Degeneracy Screen tries to avoid degenerate pivots, it is interesting
to examine the level of degeneracy in each test problem. Figure 4-3 contains in-
formation on the frequency of degenerate pivots for each pivot rule on unscaled
problems. The new pivot rule typically reduces the frequency of such blocked piv-
ots, sometimes quite substantially (see NZFRI, PILOTJA, and FFFFF800). This
suggests that part of its success derives from the ability to avoid unnecessary piv-
ots. On highly degenerate probléms, it seems likely that traversing any path of
vertices to an optimal solution will require some degenerate pivots. Indeed, many
practical problems contain blocks of activities for which dropping a key activity of
a block implies dropping all other activities in the block. Nonetheless, Figure 4-3
suggests that many such pivots performed by the simplex method are unnecessary.
Notice also that the pivot rule can still work well even when it doesn’t reduce the
percentage of blocked pivots; TUFF, CYCLE and WOODW provide examples of
this behavior.

Figure 4-4 contains comparisons of the same two pivot rules for scaled prob-
lems. Relative performance remains virtually unchanged for each test set. Very few
individual problems show significant differences; SCSD8 and FFFFF800 provide two
exceptions. The PILOT set is particularly noteworthy, since scaling dramatically
improves the performance of the standard pivot rule. Nonetheless, the Degeneracy
Screen still results in significant improvement when applied to the scaled problems.
As before, it typically reduces the frequency of blocked pivots; refer to Figure 4-5
for details.

4.3. Screening for Small Step Lengths

Figure 4-6 contains results for pivot rule (3.2(applied to unscaled problems.
Recall that this rule attempts to exclude potential incoming variables that would
result in small step lengths (hence the label “Small Screen” in Figures 4-6 and 4-7).
It performs fairly well on the KETRON set, yielding a moderate overall improve-
ment in times. It does not perform as well on these %ighly degenerate problems as
the Degeneracy Screen. This is to be expected since this rule sacrifices the ability to
avoid zero step lengths in order to gain additional information about positive ones.

e M

. P

RS

P

PIRPLEFt A

RN EXN MR X X MRS 208 ¥.0'8 A NA NN NN AT NI AW TN N R R X MM AN AN NN Y FU T A NN NN R URN AU WA YNY

However, this rule works extremely well on the PILOT set, achieving tremendous
reductions of both iterations and time on three of the four problems. On PILOTS,
the fourth problem, it reduces iterations but marginally increases time. This is more
than offset by its performance on the other three problems, particularly PILOTJA.
The approach does not work as well on the STAIRCASE and STANFORD sets,
as it marginally reduces iterations but typically increases time. The SHIP set once
again proves difficult, although the new pivot rule still performs well given the prob-
lem sizes. Iterations for the MISCELLANEOUS set typically decrease, but these
reductions frequently fail to compensate for the extra computation. Recall that
pivot rules (3.2) and (3.3) involve computation of the mean of the basic variables.
This comprises a significant portion of the extra work, especially with respect to the
bounded variable format of MINOS. Given the experimental nature of these tests,
the author computed the exact value of the mean during each iteration. In prac-
tice, one could approximate the mean using a variety of computationally cheaper
approaches, thus reducing the times significantly.

Figure 4-7 contains results for pivot rule (3.2) on scaled problems. On most
sets scaling marginally improves its performance relative to the usual pivot rule.
On the PILOT set, relative performance declines substantially, primarily because
scaling improves the standard rule so dramatically. On average the new pivot rule
still reduces iterations, but it now causes a significant increase in time for two of
the four problems.

4.4. Piecewise Linear Estimation of the Step Length

Figure 4-8 displays results for pivot rule (3.3) on unscaled problems. Recall
that (3.3) is a three-priority pivot rule that uses a piecewise linear function to es-
timate the step length associated with a potential incoming variable. We therefore
use the abbreviation “PLSE” in Figures 4-8 and 4-9. The approach generally suc-
ceeds on the KETRON set, except for the problem CYCLE. é)reat improvement in
NZFRI and DEGEN3 outweighs this bad problem. The rule executes well on the
PILOT set, dramatically reducing iterations and time on three of these very difficult
problems. Frequent reductions in iterations only occasionally reduce CPU time for
the STAIRCASE and STANFORD sets. The SHIP set continues to stymie all of the
new pivot rules, as, once again, both iteration counts and times exceed those of the
usual rule. Results are mixed on the MISCELLANEOUS set. GROW22 emerges
as the worst problem encountered for this rule. On the positive side, it is encour-
aging to note improvement on CZPROB. The ratio of iterations to rows for the
normal rule on CZPROB is about 2.0, and very few degenerate pivots occur. Thus,
pivot rule (3.3) enhances performance even though the standard method handled
the problem quite effectively.

Figure 4-9 contains the results of pivot rule (3.3) for scaled problems. Except
for the PILOT set, scaling has very little effect on relative performance. With
respect to the PILOT set, the new pivot rule still outperforms the standard rule
on average. The improvement is less dramatic than on unscaled problems, but it is
nonetheless noteworthy given the benefits of scaling for the usual rule.

4.5. Nonlinear Estimation of the Step Length

Figure 4-10 displays results for pivot rule g?G) on unscaled problems. (3.6) uti-
lizes a nonlinear function to estimate step lengths. Positive results for the KETRON
and PILOT sets resemble those for pivot rule (3.3). In general, (3.6) does not per-
form well on the STAIRCASE set; SCSDS8 is particularly discouraging. It yields a

39

2
X

\

.».‘
Pl

e -
SR

3

P
e

»

S

AN)G VAL WO e : ¥ ORI A T4 OO ‘ ' Ol
RRABK OO LR Lo i BN SUTIF & WS AL 145 XA AR A A X l‘ gt 0 e Tt Tt e T o et

IS L L A L S

P

¥ \ 3 A BTeY ety WY NN ; y ; ; !
T N T s T R o i G I A T R S e e

N T E T kS e S R O T R Y * A IRVAIRa02" 205 NN 60 SR A S 013 a B uth g¥o ot 898 g%k o) .8 29"

slight overall reduction in iterations for the STANFORD set, but times typically in-
crease. Like the other pivot rules, it performs unfavorably on the SHIP set. Results
vary drastically on the MISCELLANEQUS set. It performs quite well on CZPROB
and NESM. The improvement for NESM is encouraging since the other new rules
failed to reduce CPU time. However, it performs quite poorly on 80BAU3B, as it
more than doubles the iterations and triples the time. This is the only example
where one of the new rules increased the ratio of iterations to rows to above 5.0.

Fi 4-11 summarizes the performance of (3.6) on scaled problems. Only
rainor differences frcm the urscaled rssults occur. Even the PILOT set reveals only
a moderate decline in relative efficiency.

4.6. Parametric Method

Figure 4-12 shows results for the standard parametric algorithm outlined in
Figure 3-1. The algorithm performs quite well on the KETRON set. This confirms
our intuition since the algorithm’s purpose is to make progress in the dual even
when stalled in the primal. The results for NZFRI are particularly encouraging.
Notice also that the parametric algorithm requires less additional work per iteration
than the previously tested rules. The algorithm exhibits tremendous success on
the PILOT set, as it solves each problem at least twice as quickly. Notice that it
solved PILOTJA more than eight times faster. This performance is not particularly
surprising since the parametric algorithm’s choice of incoming variable remains
invariant under column scaling. Given the poor scaling present in these problems,
one might anticipate the benefit of a unit-free pivot rule. Nonetheless, we shall
see that the rule still performs well when MINOS scales these problems. Mixed
results characterize the STANFORD set, as we see good performances on CAPRI
and E226 accompanied by disappointing ones for BRANDY and ETAMACRO.
Results for the SHIP set strongly resemble those for the other pivot rules. None of
the two-objective strategies seems to work well. Performance varies drastically on
the MISCELLANEOUS set. The rule does quite well on STANDATA, VTPBASE
and FFFFF800. However, an alarming trend emerges for the problems GROW?7,
GROWI15, and GROW22. The same model generates each of these problems; only
the number of time periods changes. Performance worsens as size increases. The
parametric method requires over six times more CPU time to solve GROW22, a
figure far beyond the worst problems for any of the other pivot rules. Nonetheless,
except for these three problems, the algorithm doesn’t increase CPU time by more
than fifty percent and works quite well on most of the larger, more difficult problems.

Figure 4-13 contains results for the standard parametric algorithm on scaled
problems. Although overall relative performance declines compared to the results
without scaling, the approach still does well on most of the la.rﬁer problems. With
respect to the KETRON set, scaling had little influence on eight of the nine prob-
lems, and relative performance remained quite favorable. However, on WOODW
the parametric algorithm required much more time than the simplex method, as the
ratio of CPU times exceeded five. Contrast this with the unscaled results, where
the parametric algorithm solved this problem substantially faster than the simplex
method. Nonetheless, considering all problems equally, the parametric algorithm
performs favorably on this set. As for the PILOT set, relative performance declines
substantially compared to unscaled results, but the algorithm still outperforms the
simplex method on all four problems. Scaling results in only minor differences on
the remaining test sets. Note that the parametric algorithm processes GROW15
and GROW22 much more effectively when scaled, although it still requires more
time than the simplex method.

Since the parametric algorithm is designed particularly for degenerate prob-
lems, we again examine the frequency of degenerate pivots. Figures 4-14 and 4-15

40

X7 AN

[

e

<

-‘.\

#

show the results for unscaled and scaled problems. Unlike the Degeneracy Screen,
it does not usually reduce the frequency of blocked pivots. Consider the prob-
lem DEGEN3. The algorithm dramatically outdoes the simplex method, yet the
percentage of blocked pivots increases slightlyy. On DEGEN2 it outperforms the
simplex method despite a significant increase in the frequency; one encounters sim-
ilar results for SEBA and 80BAU3B. This characteristic motivated the modified
parametric aleorithm of Figure 3-2.

4.7. Summary

Summarizing the results, the Degeneracy Screen appears to be the best of the
pivot rules that utilize a dynamic second objective vector. It decreases iteration
counts on the vast majority of problems tested. Even when iterations increase,
times almost never exceed those of the standard simplex method by a factor greater
than 1.3. Also, the instances where relative performance was poorest consisted
of small to moderately sized problems that the standard method solved quite effi-
ciently. This contrasts with the new rule’s ability to substantially reduce iterations
and time on highly degenerate problems. Many of these are the large, difficult prob-
lems that require large amounts of CPU time when solved by the regular method.
The Degeneracy Screen decreases the susceptibility of the simplex method to such
disasters, and it does so at minimal risk.

The main drawback of this rule is that it is unlikely to do well on problems with
few blocked pivots like CZPROB and PILOTS. Pivot rules (3.2), (3.3), and (3.6)
attempt to alleviate this problem. They can succeed in solving fairly nondegenerate
linear programs quickly, and they perform extremely well on the PILOT set, another
group of very difficult, time consuming problems. Unfortunately, as the potential for
savings improves, so does the possibility of substantial increases in time. The worst
relative performances may occur on larger problems, and the CPU time may exceed
1.5 that of the standard rule. In rare cases the rules require twice as much time.
Despite the risks, these rules still make the simplex method less prone to disaster
since they work well on most of the large, difficult problems. Similar conclusions
arise for the parametric algorithm, but the variation in performance is much greater.
The algorithm exhibits the ability to improve or worsen times by factors greater
than six. The risk increases, but so does the payoff.

41

‘z.ﬁf

n'i’ \

Figure 4-1. Test Problem Sizes

(KETRON)

Problem Name| Size
DEGENt 67 x 72
KB2 48 x 41
WOO0D1P 488 x 2594
DoGENe 448 x 53¢
TUFF 371 x 587
WOOoDW 1099 x 8405
CYQlE 2234 x 2857
NZFRI 624 x 3521
DEGENS 1504 x 1818
|(STAIRCASE)

Problem Namel] Size
SCAGR?7 130 x 140
SCORPICN 389 x 358
SC205 208 x 203
SCSDt 78 x 760
SCTAP1 301 x 480
SCFXM1 331 x 457
SCAGR25 472 x 500
SCSD8 148 x 1350
SCAM2 661 x 914
SCRS8 491 x 1169
SCS08 398 x 2750
SCHM3 991 x 1371
SCTAP2 1091 x 1880
SCTAP3 1481 x 2480]
(SHIP)

Problem Name Size
SHIP04S 403 x 1458
SHIP04L 403 x 2118
SHIP08S 779 x 2387
SHIP12S 1152 x 2763
SHIPOSL 779 x 4283
{SHIP12L 1152 x 5427

42

(PILOT)

Problem Name| Size
PILOT4 411 x 1000
PILOTWE 723 x 2789
PILOTS 1442 x 3652
PILOTJA 941 x 1988
{STANFORD)

Problem Name Size
AFIRO 28 x 32
SHARE28 97 x 79
BEACONFO 174 x 262
CAPRI 272 x 353
BRANDY 221 x 249
ADUITTLE 57 x 97
SHARE1B 118 x 225
ISRAEL 175 x 142
BANDM 306 x 472
STARR 357 x 467
ETAMACRO 401 x 688
E226 224 x 282
(MISC.)

Problem Name Size
RECIPE 92 x 180
BORE3D 234 x 315
GROW7 141 x 301
SEBA 516 x 1028
SHELL 537 x 1775
STANDATA 360 x 1075
VTPBASE 199 x 203
GROWI1S 301 x 645
GANGES 1310 x 1681
GFRDPNG 617 x 1082
GROW22 441 x 946
SIERRA 1228 x 2036
FFFFF800 525 x 854
CZPROB 930 x 3523
NESM 663 x 2923
80BAU3B 2263 x 9799
25FV47 822 x 1571

Figure 4-2. Results for (3.1) on Unscaled Problems

Deg./Simp
0.84

1.0
1382.7 1.14
§17.9 0.84
5§27.04 0.49
5590.7 0.78
6962.93 0.95
11164.4 0.32
18027.87 0.44
Geom. Mean: 0.70

0000000
WNOOPLDBO® =

(PILOT)

Probiem
PILOT4
PILOTWE
PILOTS
PLOTJA

(STAIRCASE) TERATIONS R

Problem
SCAGR7
SCORPION
SC205
SCSD1
SCTAP1
SCFXM1
SCAGR2S
SCSD8
SCFXM2
SCRS8
SCSDe
SCFXM3
SCTAP2
SCTAP3

Deg/Simp__

& W a

e

©0000=-00-000~0
IO NO O BDONMNB®OOND®O O

]
]

43

«

0 ORI T'e Le A LA ¢ " L (CLIAUTE P g T T T T W T (M W W T T Sy La Y
.‘.'\..Q'.I I."‘."»A‘t’.n‘l.. S N " N'~’ *“ > “\\\ “ ", \\'.ﬁ‘*\“'ﬁ:\ \’ A

......

e L L N ' i) g DL XL X) s

PR TN A L LA U S LR T C IR ATt AT A L A AN KA RN A ANA NN M N T A YN LWL WY VWU WUNU FUN RN IO OO OO

Figure 4-2(ctd). Results for (3.1) on Unscaled Problems

$'9,0'90'e 1% s 3

(STANFORD) [(TERATIONS

Problem Deg. Screen _ |Simplex
]

(=g 9 1.0
SHARE2B 132 10 1.2
BEACONFD 87 87 1.0
CAPRI 27 32 0.8
BRANDY 31 29 1.0
ADLITTLE 123 144 0.8
SHARE1B 30 28 1.0
i ISRAEL 404, 29 1.3
BANOM 31 4 0.7
STAR 44 52 0.8
ETAMACRO 491 840 0.7
2268 83 581 1.1
* Geom. Mean: 0.9

(SHIP)

Problem

SHIP04S

SHIPO4L

SHIP08S

SHIP12S

SHIPOSL

SHIPt2L

(MISC))

Problem

RECIPE 1.0 1.

BORE3D 1.18 1.

GROW? 1.0 1.

SEBA 0.83 0.

SHELL 0.93 1.

STANDATA 0.5 0.

VTPBASE 0.5 0.

GROW1S 0.9 1.

GANGEB 1.0 1.

GFRDPNC 1.0 1.

GROW22 1.0 1.

SIERRA 0.7 0.

FFFFFB00 0.3 0.

CZPROB 0.93 1.

NESM 0.94 1.

80BAU3B 1.04 1.

[25FV47 0.9 1.
0.8 1.

44

BOOOGOO0 OO0 0) 3, -y .- -
".‘.-".‘ﬂ\.“"u‘!‘l‘.‘q"-’t‘n‘!‘l't‘tﬂ“‘!‘l’. 1','“. l’:‘!'.’ﬂ-’l‘;‘l’é“: l'o'i'él SO !“m‘.n.l.u. Py by i e s, it -’ l. N N

»-‘,’? - ?-.*.

-
"

R -

1oL T,

- -

A

RGN

R R A AT UL T U T

‘A ol v
RIS W)Y

Ky

% W

37,00 000" ta? 13t Pg* tg™ St 0,

WL) WA U WU W7 Y WU WL W W TR P TUM PORCTIAR TR T T S PR L W PO e L

Figure 4-3. Blocked Pivots for (3.1) on Unscaled Problems

(KETRON)

Problem Herations % Blocked

DEGEN1 35.3

KB2 37.9

WOOD1P 55.0

DEGEN2 51.8

TUFF 44.5

WOOoOW 1544 38.0

CYQLE 2974 94.4

NZFRI 2808 26.1

DEGEN3 4087 82.4

(PILOT) SIMPLEX

Problem lterations __|# Biocked | % Blocked

PILOT4 3811 562 14.7

PILOTWE 1573 24086 15.3

PILOTS 40247 1192| 3.0

[PLOTJA 50563 10613 21.0

(STAIRCASE) | DEQ SCREEN SIMPLEX

Problem Torations __I# Blocked % Blocked Iterations # Blocked % Blocked

SCAGRY 89 10.1 91 9 9.9

SCORPION 138 42.0 138 58 42.0

SC205 120 3.3 139 14 10.1

SCSD1 218 44.0 293 127 43.3

SCTAP1 322 15.5 389 108 27.2

SCFXM1 410 24.1 393 112 28.5

SCAGR2S 420 12.4 472 70 14.8

SCSDe 418 35.8 804 311 3s.7

SCFXM2 853 19.2 84 235 27.7

SCRS8 862 20.3 1003 200 19.9

SCSD8 116 33.0 121 569 48.7

SCFXMO 124 21.5 1355 365 28.9

SCTAP2 111 3e.9 1503 613 40.8

SCTAP3 167 41.3 1755 911 51.9
45

\(' Syt r/""
(WA e ” 7

¥ Xo

R A AR L A A A Sy g N A A R N N S L T LISV]) T
ot T a S Y Y VA T i R T A T A NN AT

RS

S

.-? A2 AP

PR)
LA A

-
4

NYSSN

4-1'

N A Ay

FATAE AL

EMAR TS VR T p A A k-
M}P.r_\ ,\.\,‘a - a- 2
. AT -

L) d W LI

Pa0ig g M Ay Bip d'g 8"

LN TN N TR LA U = §a¥ B¢

* ia”

WU U WU WU WU UL PUN W

Figure 4-3(ctd). Blocked Pivots for (3.1) on Unscaled Problems

(STANFORD) DEG. SCREEN SIMPLEX

Problem iterations # Blocked % Blocked Iterations # Blocked % Blocked
AFRO 9 [§5.8 9 [55.6
SHAREZ28 132 21 15.9 108§ 22 21.0
BEACONFD 87 (] 8.9 87 (] 6.9

CAPRI 278 14 5.0 32 25 7.8

BRANDY 31 23 7.2 29 36 12.2
ADUTTLE 123 1 8.1 14 18 12.5
SHARE18 30 0 0.0 28 2 0.7

ISRAE. 404 2 7.2 29 52 17.4
BANDM 31 1 5.8 44 36 8.1

STAIR 44 15 3.3 52 31 5.9

ETAMACRO 491 138 286.1 64 210 32.8
[E226 63 32 5.0 581 83| 14.3
(SHIP) DEQG. SCREEN SIMPLEX

[Problem lterations Bk % Blocked __literations B

SHIP04S 156 34 21.8 14 18.9
SHIPO4L 233 45 19.3 22 18.8
SHiP08S 25 66 28.2 24 24.8
SHIP12S 41 80 19.1 44 19.2
SHIPOSL 453 78 17.2 44 15.1

SHIP12L 92 173| 188 873 20.3
(MISC.)

Probiem % Blocked
RECIPE 3 9.1

BORE3D 131 97 74.0 81.1
GROW?7 18 3 1.8 4.2

SEBA 17 18 10.3 14.6
SHELL 23 43 18.0 18.6
STANDATA 21 119 54.8 68.2
VTPBASE 23 4 20.8 37.8
GROW1S 50 7 1.4 4.3

GANGES 684 14 20.5 21.8
GFROPNC -]] 2¢ 390.9 48.2
GROW22 1] 1 1. 4.6

SIERRA 92 480 49, 48.6
FFFFF800 1) 141 21 30.3
CZPROB 172 30 1. 3.1

NESM 4849 1 0. 0.0

80BAU3B 838 373 4. 9.8

gSFV‘? 8816 131 1. 7.9

ot ‘-f.q".‘«" ol

46

T _,. .v\: ‘o ‘_.r,'.f_.- o

- .\- .:\—'-.4‘-

™ W

‘-'\\‘v-"

W

PUNL PO Y

'-{'- Pt e T A T
5, 0, 0y%, W, B,

NS

R R W O VR I O T I I O O TR, “§ 00 Rt fia g gt vat, st at taY tal Yy R RN E SV CU WURS WY wows W YUY V) & sall ey """”c’t

N
o:!'
A
°
Figure 4-4. Results for (3.1) on Scaled Problems i::
i
l.q'l‘-
'h‘.
2
I|=t
(KETRON) ITERATIONS cPU PY
L} .
Problem X
DEGBNH 1.13 1.04 'Q‘lf
KB2 1.0 1.08 A
WOOD1P 0.7 0.9 .
DEQEN2 0.4 0.62 ittt
TUFF 0.43 0.55 L
WOooW 0.61 0.75 n
CYQLE 0.83 0.93 et
NZFRI 0.2 0.31 (AN
DEGENS 0.47] 0.53} s
Geom Mean: 0.81 GeomMean: | 0.70| i, t'é
°
(PILOT) crU &
el
Problem . Screen 4y
PILOT4 836.81 841.0 0.99| A
PILOTWE 4746.1 6457.3 0.74 X
PLOTS 71201.03 84860.0 0.84 °
PILOTJA 6596.5 7751.9 0.85 W
Geom Mean: | 0.85] ::.o:
l‘||l'§
"e..‘(
—— — |‘ W
(STAIRCASE) ITERATIONS cPU N
[Problem Deg. Screen __[Simpiex Deg./Sim Deg. Screen | Simplex Deq./Sim v
SCAGR? 85 88 0.9 15.2 14.30 1.06 :.,g:’
SCORPION 104 104 1.0 42.03 38.3 1.10 o
SC205 116 110 1.0 26.37 22.30 1.18| l}:,,:?
SCSDY 421 623 0.6 117.38 145.30 0.81 s,
SCTAP1 219 216 1.01 69.77 61.40 1.14
SCFXM1 329 315 1.04 111.88 92.90 1.20 o
SCAGR25 300 307 0.98 121.28 105.40 1.15 R
SCSDe 761 1581 0.49 342.02 553.40 0.62)
SCFXM2 750 874 0.8 487.02 441.20 1.06 P!
SCRS8 582 688 0.84 307.25 302.30 1.02 n»
SCSD8 2021 4335 0.47 1799.47 3288.1 0.55 by
SCFXM3 1138 1223 0.93 1028.57 915.20 1.12 ‘o
SCTAP2 745 753 0.9 696.68 602.50 1.16| -
SCTAP3 948 944 1.0 1140.78 988.30 1.15 e
Geom Mean: 0.85] Geom Mean: | 1.00 N ¢
il
b
h e
®
l"
:c:'\'
Y
-"’“ .
°
.‘;:\
hhy!
‘ t
47 2
R
 X]
N

)

L. R L ! .t et e - - -~ - - - - - -t E " et ecA T m T A N AT AT A™ N LN NS AT ™ - . w- - - by

: ..o., A .l oY _."\v. _,. ,n '.‘,- '\(’N - I.\ - -_.'*n._ﬁ- 5 ' '_\ NN . Y "'v_.'b- S ',\. I',\v'\. -r"v-'*" Y ”\. o .. d‘\' oY) ﬁ. LS9 .,,:.5'-:\ * ~ Y .“
- . & > . hor '8 d ') 9. . . 0) 'm 3) A A A , Mg LA ! N

T R U R T S R A AR P) __ $a° 03 0a ata i 0aY. " 0a0 (Y OOV R AR R TR R B 0at Pov Bl g 8 Aok St hu¥ §u8 Q. NEE Rt Bt B »

?,‘i
r 4
o
’
Figure 4-4(ctd). Results for (3.1) on Scaled Problems 2
. "‘
A
“’
(STANFORD) ITERATIONS cPU »
Problem Deg. Screen _|Simplex Dey /Simp ‘."
AFIRO 6] 1.0 R
SHAREZB 117 11 1.0 iy
BEACONFD 97 0.9 !
CAPRI 238| 245 0.9 ¥
BRANDY 3e1 477 0.7 .
ADUITTLE 110 114 0.9 s
SHARE1B 277 274 1.0 ;-s.
ISRAEL 251 296 0.8 ™
BANDM 3ss 454 0.8 -3
STAR 465 418 1.1 1
l ETAMACRO 3se| 818 0.6
[E226 558 472 1.1 0
Geom. Mean: 0.9 5
(SHIP) TTERATIONS cPU >3
| =
I Problem . Screen__ [Simplex Deg./Sim)
SHIP04S 155 144 1. :
SHIPO4L 249 231 1. v
SHIP08S 264 240 1. YA
SHIP12S 407 399 1. o
SHIPOSL 461 449I 1. ot
SHIP12L 911 889 1. ’
Geom. Mean: 1 =
Y . '.
(MISC.) TTERATIONS cPU A
s
Problem . Screan__ [Simplex Deg./Simp _ |Deg. Screen |Simplex Deg/Simp | ¥
RECIPE 33 33 1.00 9.30 9.40 0.99)
L BORE3D 94 148| 0.65 31.45 39.30 0.80 i
b GROW? 151 160 0.94 58.87, 53.20 1.07 ‘.
SEBA 317 364 0.87 155.81 158.60 0.98 .
SHELL 238 2s8 0.92 162.03 150.20 1.08 -
. STANDATA 135 129 1.05 71.61 63.60 1.13 o
i VTPBASE 46 89 0.52 15.96 20.40 0.78 y
GROW1S 457 464 0.98 274.61 235.80 1.17 ~q
GANGES 71 699 1.02 661.01 529.50 1.25 N
GFROPNC . 720 659 1.09 349.04 288.20 1.21 -3
f GROW22 693 758 .92 573.85 507.70 1.13| 3
! SIERRA 891 1351 0.66| 894.51 1148.90 0.78 -
] FFFFFB00 827 939 0.88 142.38 435.10 1.02
CZPROB 1298 1525 o.azl 1593.8 1519.50 1.05)
NESM 3359 2887 1.1 3283.11 2377.50 1.38 X
80BAU38 13949 174686 0.80] 38422.39] 37894.10 1.01 o
25FV47 8757 8442 0.80) 7505.33 7684.40 0.98 N
! Geom. Mean: 0.90 Geom. Mean: 1.04] o~
g %
))
-
e
23
48 e
L,
J‘._
s o
"" BN L e T A N T N e N N N e NN N S N A NOh

; AR R TN AR KT XK XA T WU I 2% a5 a3 a8 uth st 2" a%2 nts u'h 85,93 48 8" BB e b el Vol Y g P R ENR el ¥, 3 vab 7o8.) ¥ 00)
s ;
3
ki
: Figure 4-5. Blocked Pivots for (3.1) on Scaled Probiems '-
e
4 J
. (KETRON) | DEG. SCREEN ,
Y — — t
) Problem lterations % Blocked % Blocked ¢
) DEGEN1 35.3 40.0 v
) KB2 25.5 25.5 v
o WOOD1P 693 4068 s8.8 62.2 ‘
DEGEN2 61 252 41.2 57.1
if TUFF 48 208 43.2 36.1
K WOoooW 232 898 38.7 47.6
¥ CYQLE 2519 2174/ 6.3 85.0]
! NZFRI 1832 84 35.0 50.7 0
A DEGENS 4914 358 72.4 78.4 !
¥ .‘
" (PILOT) ¢
IV '
'y Problem iterations :;
, PILOT4 1261 s
’ PILOTWE 3847)
PILOTS 12923
ke PILOTJA 4788 &
3 1Y
: b
P (STAIRCASE) DEQ. SCREEN SIMPLEX
X f p
g Problem iterations __|# Blocked [% Blocked _ [iterations _ |# Blocked |% Blocked it
SCAGR7 85 9 10.8 88 10 11.4
‘ SCORPION 104 44 423 104 44 423
2 $C205 118 8 6.9 110 14 12.7 9
. SCSD1 421 202 48.0 623 394 63.2 3
' SCTAP1 219 58 26.5 216 6o 27.8 v
SCFXM1 329 331 100 315 41 13.0 .
SCAGR2S 300 46 15.3 307 48 15.6
, SCSD8 761 185 24.3 1561 606 38.8
SCAXM2 750 69| 9.2 874 118 13.5 ;
¢ SCRS8 562 90 16.0 668 18 26.9 .
N\ Scspe 2021 633 31.3 4335 2722 62.8 3
p SCPXM3 113§ 111 9.8 1223 183 15.0 :
SCTAP2 745 384 51.5 753 41 55.6)
> SCTAP3 948 seel 59.7 944 564 59.7
'
a ,
) \'
F, ‘
o "
L/ '
¥ ‘]
Ll I
» &
d)
F L)
¢ :
! 49 '
b h
N .
O o e B N g T A NI AL

Figure 4-5(ctd). Blooked Pivots for (3.1) on Scaled Problems

(STANFORD) DEG. SCREEN

Problem # Blocked ltegations % Blocked
AFIRO 6 3] 3 50.0
SHARE2B 117 17 112' 201 17.4
BEACONFD 97 12 . 98 17 17.3
CAPRI 238 17 7.1 24 25 10.2
BRANOY 361 11 3.0 477 28 5.9
ADUITTLE 110 9 8.2 114 13 11.4
SHARE1B 277 4 1.4 274 1 3.6
ISRAEL 251 9 3.8 296 17 5.7
BANDM 38 14 3.6 454 28 6.2
STAIR 465 1 4.1 418 52 12.4
ETAMACRO 386 66 17.1 61 122 19.7
[E226 558 39 7.0 47 19.3
(SHIP)

[Problem lterations

SHIP04S

SHIPO4L

SHIPO8S

SHIP12S

SHIPOSL

SHIP12L

(MISC.) DEG. SCREEN

Problem]# Blocked iterations % Blocked
RECIPE 33 3 33 9.1
BORE3D 96 41 57.4
GROW? 159 5 3.8
SEBA 317 49 15.9
SHELL 238 45 18.6
STANDATA 135 75 57.4
VTPBASE 46 9 42.7
GROW15 45 [2.8
GANGES 71 185 29.2
GFROPNC 72 237 411
GROW2 893 10 3.0
SIERRA 891 39 40.9
FFFFF800 82 169 3468 36.8
CZPROB 129 43 6.2
NESM 3as 0 0.0
80BAU38 1394 521 6.7
25FV47 6757 1186 8.5

Figure 4-8. Results for (3.2) on Unscaled Problems

(KETRON) TTERATIONS U
Problem Small Screen Small/Simp
DEGEN1 1.04
KB2 1.10
WOOD1P 1.11
DEGEN2 0.7
TUFF 1.28
WOooowW 0.7
CYQE 1.09
NZFRI 1.00
DEGEN3 0.60
0.95
(PILOT) CPU
Problem Smali Screen [Simplex Small/Sim
PILOT4 1334.5 2089.3 0.64
PILOTWE 13883.23 1585827.7 0.88
PLOTS . 137199.1 136832.0 1.00
PILOTJA .31 26552.0 64719.7 0.41
Geom.Mean: | .54 Geom. Mean: 0.6
(STAIRCASE) ITERATIONS cRU
[Problem mp__|Small Screen | Simplex SmalySimp_|
SCAGR7 91 0.8 14.37| 13.9 1.03
SCORPION 138 0.8 47.69 44.40 1.o7L
SC205 139 1.0 34.25 25.80 1.33
SCSD1 293 0.8 72.21 74.20 0.97
SCTAP1 389 1.01 123.75 95.10] 1.30
SCFXM1 393 1.22 170.42 108.30 1.57
SCAGR2S 472 0.91 197.57 157.10 1,26L
SCs08 804 0.61 23.11 295.50 0.78
SCFXM2 848 1.27 724.43 424.50 1.71
SCRS8 1003 0.92 5§78.60 430.20 1.34
SCSD8 1219 1.11 1237.74 912.20 1.36
SCFXM3 1385 1.1 1564.5 1023.70 1.83
SCTAP2 1503 1.2 2039.18 1198.30 1.70
SCTAP3 1755 1.08 2553.18 1821.60 1.40
Geom. Mean; o.eg Geom. Meen: 1.28

0 >
L) .!t':‘.s‘._|':'

T o % g VA o DR v " 5w PRIV O IO NreTrad 4 wal ®ob ok
K
.“'
e,
o
%
Figure 4-8(ctd). Results for (3.2) on Unscaled Problems ::::'
'
=
!",s'
K
(STANFORD) TTERATIONS ~ CcPU L4
4%
)
Problem Small Screen [Simplex | e
AFIRO) 9 1.0 o
SHAREZ28 11 108 1.1 o
BEACONFD 8 87 1.0 4!
CAPRI 383 320 1.2
BRANDY 308 298 1.0 it
ADLITTLE 98 144 0.8 .:3:
SHARE1B 227 286 0.7 e
ISRAEL 260 298 0.8 e
BANDM 496 445 1.1 ‘
STAR 503 526 0.9 J
ETAMACRO 623 640 0.9 o
E226 530 581 0.9 . .21 i,
Geom. Mean: 0.96] Geom. Mean: | 1.23) :,:}1:;
‘.v
‘\
X
4
(SHIP) ITERATIONS cru OO
Problem Small Screen Small/Sim Small Screen |Simplex Small/Sim gy
SHIP04S 18 1.2 131.42 91.30 1.44 RN
SHIPO4L 289 1.3 237.23 159.10 1.49 o
SHIPOSS 328 1.33 385.84 231.20 1.5 Ving
SHIP12S 48 1.07 661.7 478.2 1.38 e
SHIPOSL 58 1.31& 907.8 561.4 1.62] b
SHIP12L 942 .08 1834.97 1344.2 1.37
Geom. Mean: | 1.22| Geom. Mean: 1.48 ;_"
At
o 'I@
(MISC.) cU -
0".‘\‘
Problem Small/Simp__|Small Screen |Simplex Small/Simp '.
RECIPE 1.00 9.10 8.60 1.06 Sty
BORE3D 1.73 50.49 29.94 1.69 Ry
GROW? 1.1 78.81 53.80] 1.47 RN
SEBA 0.68 103.56 106.80 0.97 "
SHELL 1.03 182.24 143.23 1.27 o
STANDATA 0.9 153.09 130.70 1.17 S
VTPBASE 0.61 49.56 65.4 0.76] °
GROW1S 1.14 419.16 262.80 1.59 1
GANGES 0.97 678.23 477.71 1.42 r:.;
GFROPNC 1.24 442.687 278.86 1.5 Q\
GROW22 1.2 1142.85 630.30 1.81
SIERRA 0.93 1388.48 1145.8 1.21 a&
FFFFF800 0.71 840.98 878.63 0.96
CZPROB 0.7 1874.40f 1773.07 1.06 .,.
NESM 0.9 4730.09 4051.30 1.17,)
80BAU3B 0.71} 18236.82| 19078.97 0.96 NN
[25FV47 0.81 7420.03 8721.53 0.85 a3
0.93 Geom. Mean: 1.20] NP
AW
®
)
l...:‘l
R
e
52 o‘:‘.v
- :
T A T) S A oo W 3 S W A 1 -.'\n '\.-V\\\
AR NS NN .t. A ": AR A ' “ .v THGAGALLLEY, ‘.‘l‘ ‘!‘4‘- WS, WY, ‘- OO T X A . }

e
Ll

O
ORI

Figure 4-7. Results for (3.2) on Scaled Problems

(KETRON)

Problem

DEGEN!

K82

wOQoD1P

DEGEN2

TUFF

WOODW

CYQE

NZFRI

DEGEND

(PILOT)

Problem

PILOT4

PILOTWE

PILOTS

PILOTJA

(STAIRCASE) [— MERATIONS cU

[Problem Small Screen D |Small Screen |Simplex TSmail/Simp

SCAGR7 a1 .9 . 14.3 1.09

SCORPION 102 .9 38.3 1.16

SC208 112 .0 22.30 1.36

SCSD1 384 .8 145.30 0.77

SCTAP1 2868 .23 61.40 1.42

SCFXM1 414 .31 92.90 1.62

SCAGR25 412 .34 105.40 1.81

SCSD6 884 .55 553.40 0.73

SCFXM2 912 .04 441.20 1.

SCRS8 473 71 302.30 0.

SCSD8 2475 .57 3288.1 0.

SCFXM3 1478 21 915.20 1.

SCTAP2 798 .0 802.5 1.

SCTAP3 987 .0 988.3 1.
0.93 Geom. Mean: 1.

33

>e 0, L0 T A P T T T = S ™ e N e L L W TR AL A T T L T
1I'o‘l‘1..1‘:‘"c't‘u!ld’l‘v'.l':"‘:’"'."'« !v'.N‘ l-"l. eV Wy 0.&.",'."‘« 0! ..‘-) .' AN ...\ !Qt' Dl \ N.‘ N-": ‘N "‘ A !’ A

LN

R R T R R R L R T R O O T N N N P M RN PN AN AU N U RA NN U R Nu UM U R Y . ERNNUN S XU
N
;51
Figure 4-7(ctd). Results for (3.2) on Scaled Problems o
B
0'»
o,
X
(STANFORD) .
Problem Smail Screen SmaivSimp N
ARRO e s 1.0 i
SHAREZ28 9 0.8 O
BEACONFD 9:! 1.0 A
CAPRI 311 1.2 X
BRANDY 361 0.7
ADLITTLE 9 0.8 58
SHARE1B 144 0.5 o
ISRAEL 2s 0.8 ,
BANDM 474 1.0 :’a:
STAIR 453 1.0)
ETAMACRO 398 0.6 3
E226 40 0.8 . .
0.8 (R
"
Q:Q_
(SHIP) o
Wy
Problem
SHIP04S .
SHIPO4L e
SHIPOSS W
SHIP128 h
SHIPOSL s
SHIP12L &
)
'.‘
A3
_ W
(MISC.) !
o
8
|Problem N
RECIPE .
BORE3D ¥
GROW? vt
SEBA .]
sHELL .23 o
STANDATA _ zl ..j.
VTPBASE .08l it
GROW15)
GANGES o
GFROPNG) o
GROW22 1135.47, X 2l
SIERRA 1218.45 1148.9 .08} by
FFFFF800 663.07 435.10 .52
CZPRCB 1147.56 1519.50 0.76|
NESM 2905.48 2377.50 1.22 -
80BAU3B 30330.45| 37894.10 0.80 .
[25FV47 4884.02| 7684.40 0.64 ¥
Geom. Mean 1.16 A

SR AL
o

& &,
- .,

54

2

o]
¢

{
wy g L AP PRI . . " - v, . . W o, P .
~‘,“‘ M\C"l ‘Q"."‘! a.l . l.h.l 2 A A ¥ ‘..,'n ...‘4' R .' l‘. i.! n"‘h!‘!’."x'l‘?‘l‘-‘ ;“.!, " * - '- ‘!’i'!‘i v‘l 0'0 ° i o N - ,p e‘l‘!’l‘!‘l a! ..n'h.—.l' h‘o'n‘!.:.?'h"-.\.'

L T T
t‘.l»’i W,

X '-\.’ e

Lt A 2N

WU TR SO W T I WO IO

Figure 4-8. Results for (3.3) on Unscaled Problems

(KETRON)
Problem
DEGEN!
KB2
WOOD1P
DEGEN2
TUFF
WOOOW
CYCLE
NZFRI
DEGEN3
(PILOT) cU
PLS Simplex] PLSE/Sim
1343.11 2069.3 0.65]
6441.7 15527.7 0.41
174836.33] 136832.0 1.2
28580.93] 64719. 0.4
Geom. Mean: 0.8
(STAIRCASE) TERATIONS cPU
[Problem PLSE Simplex] __PLSE/SIm PLSE Simplex] _ PLSE/Simp]
[SCAGR? 107 91 1.1 18.18 13.90 1.31
SCORPION 132 138 0.9 50.88 44.40 1.18
SC205 112 139 0.81 27.37 25.80 1.06
SCSD1 224 293 0.7 72.11 74.20 0.97]
SCTAP1 343 389 0.88 109.37 95.10 1.15
SCFXM1 408 393 1.04 143.79 108.30 1.33
SCAGR2S 339 472 0.7 143.4ol 157.10 0.91
SCSD8 529 804 0.6 253.00 295.50 0.86|
SCFXM2 788 848 0.93 532.80 424.50 1.26
SCRS8 758 1003 0.7 443.87 430.20 1.03
SCSDe 1082 1219 0.8 989.42 912.20 1.oeM
SCFXM3 1277 135§ 0.9 1303.05 1023.70 1.27]
SCTAP2 1223 1503 0.81 1244.e7L 1198.30 1.04
SCTAP3 1482 1755 0.84) 1971.80 1821.60 1.08
Geom.Mean: | 0.8 Geom.Mean: | 1.10]
55
T T T D

)
q':‘n‘

(STANFORD)

S B WU PO I W ISR O TR AN T (M A RE YNNI ¥ PV U TG U U A AN AR R AT

Figure 4-8(ctd). Results for (3.3) on Unscaled Problems

Probiem

AFIRO
SHARE28
BEACONFD
CAPRI
BRANDY
ADUTTLE
SHARE18
ISRAEL
BANDM
STAIR
ETAMACRO
E226

(SHIP)

Problem

Simplex

SHIP04S
SHIPOAL
SHIP08S
SHIP128
SHIPOSL
SHIP12L

148
220
248
448
449
873

PLSE/SIm

(MISC.)

Problem

RECIPE
BORE3D
GROW?
SEBA
SHELL
STANDATA
VTPBASE
GROW1S
GANGES
GFROPNC
GROW22
SIERRA
FFFFF800
CZPROB
NESM
80BAU3B
[25FV47

PLSE/Simp]

- -
oo
[~)

2 BN BADD S S

vleovwomomovwnanow

ojpo-oo0o0o-+-0-00-0=

56

"

\J

R o4,

]

v

-
(od
ety

»

_‘ Q’. I r..r&rl‘ -

L]

) Pa.¥ (P - e M e Fim R A LT M~
NI N TR T A T T T A T R AT O A e e M AT \

N R RIS T K R T O O S R T ORI

-

P

-y

R

. '.o‘,l' ' l"' 5

(KETRON)

Figure 4-9. Results for (3.3) on Scaled Problems

RO R R R N LA AN AN KRN AN N AN TP AN

[Problem

DEGENt
K82
WooD1P
DEGEN2
TUFF
WOooow
CYQE
NZFRI
DEGEN3

e ——

(PILOT)

Problem

PLS

PILOT4
PILOTWE
PLOTS

PILOTJA

1533

6698
1818

7114

(STAIRCASE)

Geom. Mean:

Problem

SCAGR7
SCORPION
SC205
SCSOD1
SCTAP1
SCFXMt
SCAGR2S
SCSDe
SCFXM2
SCRS8
SCSD8
SCPAXM3
SCTAP2
SCTAP3

s
98
111
303
278
434
417
870
863
387
2674
13886
777
994

Simplex

14.30
38.30
22.30
145.30
61.40
92.90

105.40
563.40
441.20
302.30
3288.1
915.20
602.50
988.30

Tl W T Py S, S W W Ty ("-‘l.r'.r T A TAT AT A
M VG A e

A" A

57

A
Ny LA

.y~ "

"

9}

Geom. Mean:

Vf\}'-{\}'v}:-;"q"\"-’ -l"’\v:. “,F.'J';“-f“._l

v
'\._ ‘vf -

\.’:

S
Y

P PR A LN

R AU YO T PO T o e

Figure 4-9(ctd). Resuits for (3.3) on Scaled Problems

(STANFORD)

Problem
AFRD
SHARE2B
BEACONFD
CAPRI
BRANDY
ADLITTLE

-h
o

ISRAEL
BANDM

ETAMACRO

—

olopoocooooo-ooe
DO ANONADDODO OO

(SHIP)

Problem PLSE Simplex] PLSE/Simp|
SHIP04S . 128.7 95.7 1.34
SHIPO4L . 219.14 171.7 1.28|
. 330.17 232.2 1.42
SHIP128 ! . 596.33 438.0 1.37
SHIPOSL . 820.47 576.8 1.42

1

1

|SHIP12L , 1768.31 1384.4 .28|
Geom. Mean: .35

(MISC)) eoV]

Problem PLSEI Simplex] PLSE/Sim _PLSE Simplex] PLSE/Simp|
RECIPE 34 33 1.03 10.02 9.40 1.07

BORE3D 102 14 35.43 39.30 0.90
GROwW? 166 180 79.06 §3.20 1.49
SEBA 279 364 149.81 158.60 0.94
SHELL 309 258 215.01 150.20 1.43
STANDATA 81 129 58.39 63.60 0.89|
VTPBASE 44 89 16.58 20.4 0.81
GROW1S 484 484 376.58 235.80 1.61
GANGES 689 699 893.84 §29.50 1.31
1.
1.
1.
1.
0.
2.

°
@

~ &

(%)

o

GFROPNC 740 659 397.97 208.2 as
GROW22 783 758 803.14 507.70 58
SIERRA 1073 1381 1196.29 1148.9 04
FFFFF00 803 939} 480.2 435.1 10
CZPROB 1007 1525 1390.28 1519.50| 91
NESM 4798 2887 5147.84 2377.50) 17
80BAU3B 110758 17466 34958.75| 37894.10 0.92

[25F Va7 5488 8442 7085.85: 7684.40 0.92
Geom. Mean: .

Geom. Mean:

DO POBO®NO 2 OVOOLANNO

i

)
R, N A I P PN K L AP A A A A R » I PN A T I [-
SO ..*a\ LRLS \n' kl\ DR R SRR LY n' o ., . % K .‘.-_\-\J'_‘-v:..\- 5 -: A PR -

Figure 4-10. Results for (3.8) on Unscaled Problems

| (KETRON) U
'Problem Simp
DEGEN1 1.7 .
KB2 0.88 1.03
WO001P 0.8 1.0
DEGEN2 0.7 1.0
TUFF 0.68 0.9
WOODOW 0.6 0.84
cYaE 1.0 1.42
NZFRI 0.3 0.40
DEGEN3 0.5 0.81
‘ 0.92]
(PILOT)
(STAIRCASE) | cu
[Problem NLSE/Sim NLSE/Simp|
[SCAGRT 1.2 1.36
SCORPION 1.13 1.29
SC20% 0.8 1.00
SCSD1 1.3 1.52
SCTAP1 0.87 1.13
SCPXM1 1.00 1.29
SCAGR25 1.28 1.50
SCSD8 1.31 1.65
SCAXM2 1.1 1.58
SCRSS 1.0 1.39
SCSDe 1.9 2.48
SCFXM3 1.2 1.57
SCTAP2 1.3 1.77
SCTAP3 1.11 1.4
1.19' | 1.47|
»
.
r
%‘
A
»
',‘-'.‘
“
‘.‘;_1
“~»
2
5
59)
v
b
._t-:
N S e e e e Y Y ALY NN AT A T T "‘

N O P Y T N O N T O

PR T ORI IR ¥ T ORI T LU AT TR TR W) A RENANAR AN R YR N

Figure 4-10(ctd). Results for (3.6) on Unscaled Problems

(STANFORD)
Problem NLSE/Simp| Simplex
AFIRO 1.0 .
SHARE2R 0.9 .
BEACONFD 1.01 1.2
CAPRI 1.04] 1.2
BRANDY 1.52 1.84
ADUTTLE 0.81 0.96
SHARE1B 0.6 0.92
ISRAEL 1.0 1.34
BANDM 0.77 1.00
STAIR 1.00| 1.30
ETAMACRO 1.11 1.46
|E226 1.0 1.40
o.sa Geom. Mean: | 1.21]
(SHIP) TERATIONS cPU
Problem Simplex] _ NLSE/Sim NLSE/Simp)
SHIPO4S 148 1.1 126.3 1.38
SHIPO4L 220 1.3 245.5 1
SHIP08S 248 1.33 375.% 1.
SHIP12S 448 1.1 €99.73 1.
SHIPOSL 449 1.14 862.9 1
SHIP12L 873 1.18 2043.7 1344.20 1
Geom. Mean: 1.20[Geom. Mean: 1
(MISC.) cAU
\Fioblem Simplex] NLSE/Simp
RECIPE 8.60 1.03
BORE3D 29.94 1.28
GROW? 53.6 1.77
SEBA 106.80 1.03
SHEL 143.23 1.s§'
STANDATA 130.7 1.0
VTPBASE 65.4 0.93
GROW1S 262.80 2.02
GANGES 477.71 1.51
GFROPNC 278.8 1.48
GROW22 1232.41 630.30 1.96
SIERRA 1264.08} 1145.80 1.10
FFEFF800 823.61 878.683 0.94
CZPROB 1066.72 1773.07 0.60
NESM 3494.59 4051.30 0.86
80BAU3B 64370.01] 19078.97 3.37
25FV47 14394.41 8721.53 1.65
Geom.Meer: | 1.31

60

TATRT R

N A A A A AN A A WA AT R NS

A
s,

Ny Y

LN

’, ".'{.‘{.'"-.'. . 'v o7 '®
.7 S

e
P It','t'f",".. s

® .

Figure 4-11. Resutts for (3.6) on Scaled Problems

(KETRON) TERATIONS

NLSE/Simp]|

<
al
%
3

Problem NLSE Simplex
OEGENt 21 1
KB2 §3 s
WOOD1P 541 87
DEGEN2 1] 127
TUFF 58 112
WOODW 208 3801
CYQE 3575 3017
NZFRI 3222 745
DEGENS 5782 10453
Geom. Mean:

-
»n

13
.8
1743.81
5§31.97
296.48
5626.50
9488.40 §912.14
4088.44 8904.42
13372.7 17283.76

oloo~oo0o0o00
~NjA b 2RO NP O

(PILOT)

Problem Simplex NLSE/Sim
PILOT4 15833 . . . 1.07
PILOTWE 669670
PLOTS 1816 . . . 0.91
PILOTJA 7114 . . . 1.00]
Geom. Mean: :

(STAIRCASE) TTERATIONS

[Problem Slmgloxl NLSE/Simp|]
SCAGR? 88 1.03 16.32

SCORPION 104 §3.52
SC205 110 27.7
SCSD1 823 146.31
SCTAP1 216' 104.24
SCFXM1 315§ 145.07
SCAGR2S 307 160.53
SCSD8 1581
SCAXM2 874
SCRS8 eeeJ
SCSD8 4335
SCFXM3 1223
SCTAP2 753
SCTAP3 944
Geom. Mean:

-
N

PO G o I e S I SPD N S AP

bt At O A2 O - - =200
“advwoNv—coanmdvrmo

-
w
~

O AR £ L T S S SO T e T S e R S N A

+® W' <

atgYala® L o8 Baw 3.8 2o 0,0°6.8 B i 683 452 4"0 l'

W

bt sl Yo i,

Figure 4-11(ctd). Results for (3.8) on Scaled Probleins

(STANFORD) TERATIONS cAU
Problem NLSE Simpiex] NLSE/Simpj N..SE] Simplex NLSE/Simp
ARRO [6 1.0 2.47 2.60 0.95
SHAREZ28 93 115 0.81 14.84 14.40 1.03
BEACONFD 103 98| 1.0 40.24 33.10 1.22
CAPRI 237 245 0.9 70.27 57.30 1.23
BRANDY 494 477 1.0 148.40 111.50 1.33
ADLITTLE 82 114 0.7 10.82 12.00 0.89
SHARE1B 134 274 0.4 28.48 40.60 0.70
. ISRAEL 203 296 0.8 56.87 83.30 0.90
| BANDM 418 454 0.9 165.99 139.70 1.19
STAIR 418 418 1.0 310.78 253.40 1.23
ETAMACRO ssol 618 0.9 223.58 190.80 1.17
[E226 467 472 0.9 148.97 112.90 1.32
Geom. Mean: 0.8 Geom. Mean: 1.08
(SHIP) TERATIONS cPU
Problem NLSE Simplex NLSE/Simg
SHIPO4S 176 144 1.41
SHIPO4L 297 231 1.49
SHIPOSS 321 240 1.58|
SHIP12S 487 39 1.55
SHIPOSL 530 4431 1.53
SHIP12L_ 9586 889 1.40
Geom. Mean: 1.49
: (MiSC.) TTERATIONS
‘ Problem NLSE Simplex]__NLSE/Simp Simplex] _NLSE/Simp
RECIPE 33 33 1.00 9.40 1.06
BORE3D 101 148 0.68 39.30 0.91
GROW? 295 160 1.84 53.20 2.26
SEBA 302 364 0.83 158.60 1.01
; SHELL 361 258 1.4 150.20 1.58
} STANDATA 251 129 1.9 83.80 1.89
VTPBASE 47 89 0.53 20.40 0.83
GROW15 836 464 1.3 235.80 1.89
GANGES 831 899 1.1 529.50 1.47
GFROPNC 788 859 1.2 288.20 1.42
: GROW22 1125 756 1.4 1123.72 507.70 2.21
. SIERRA 909 1351 0.87] 987.50 1148.90| 0.86
FFFFF800 1314 939l 1.40 769.92 435.10 1.77
CZPFROB 818 1525 0.54 1124.45 1519.50 0.74
NESM 3868 2887 1.34 3892.34 2377.50 1.64
80BAU3B 364186 17466 2.08] 112980.82] 37894.10 2.98
25FV47 13031 8442 1.54 15820.22 76884.40 2.06
Geom. Mean: 1.14 Geom. Mean: 1.45
]
) 62
N ISR SRR ,‘:}, NN NI »‘-.,‘} NN e -,~,~, ,j-;." VAN

-

‘»

‘.
&

/2

A

SRR N

o

L r ¥ 'w
SN S)

a7

WeEr L, 57w

A

AN

Bl DR T N

P

R AR L RN g

e .
LA

»

ST A L A

aprrrS

._::-} -,

Cl S
€ e 2"y
x5 %

s'p,

»
A_f

P

v

W

0 g et e A ae RS R T T

TR o 0 ¥

v havaie ata’ata’ St
™ WM -

TR LW PR T TR Ry ™

Figure 4-12. Results for Parametric Aigorithm on Unscaled Problems

{(KETRON) TERATIONS (o V)
Problem
OEGEN1
KB2 .
WOQOD1P 1382.79
DEGEN2 1082 517.9
TUFF 524 §27.04
WOODW 1841 5§5980.70
CYQlE 2348 6962.93
NZFRI 11164.49
DEGEN3 18027. 67
Geom. Mean
(PILOT) CcAU
Problem Para./Simpl _ Parametri Simplex] Para./Sim
PILOT4 0.4 984.3 2069.3 0.48
PILOTWE 0.2 4037.1 15827.7 0.26
PILOTS 0.4 61415.01 136832.0 0.4
PLOTJA 0.1 8023.2 84719.7 0.1
0.2 Geom. Mean: 0.2
(STAIRCASE) ITERATIONS cRU
Problem Parametric Simplex]_Para/Simp| _Parametrid] Simplex] Para./Simp
102 91 1.1 16.02 13.90 1.15
SCORPION 126 138 0.91 48.13 44.4 1.04
SC205 142 139 1.0 26.59 25.80 1.03|
SCSD1 233 293 0.8 74.20 0.94
SCTAP1 241 389 0.6 95.10 0.76
SCFXM1 396 393 1.01 108.30 1.09
SCAGR2S 578 472 1.22 1587.10 1.32
SCSD8 592 804 0.74 295.50 0.85
SCFXM2 8és 848 1.0 424.50 1.12
SCRS8 490 1003 0.4 430.20 0.57
SCSD8 170 1219 1.40 912.20 1.51
SCFXM3 138 1355 1.01 1023.70 1.07
SCTAP2 774 1503 0.51 1198.3 o.saJ
SCTAP3 1071 1788 0.81 1821.60 0.68
Geom. Mean: 0.85 Geom. Mean: 0.94]
63

-\.u-."

R EARNKEEA TR 3 Fat pav §at Ga¢ fat ta (R VA el ol ath gt odh J0g" A te s "y i £) J Rl R T R WA WA L) Vol Pal ag vaf ‘g¥ 3t

P Figure 4-12(ctd). Results for Parametric Algorithm on Unscaled Problems]
D)
I q
P g
o —)
(STANFORD) ITERATIONS ~ CPU
&
Z,' Problem “Para/Simp| __Parametr Simplex] Para/Sim "
& ARRO 1.114 28§ 2.3 1.06 :
) SHARE28 1.17] 15.73 13.55 1.16
¢ BEACONFD 0.9 32.08 27.03 1.19 :
¢ CAPRI 0.6 52.77 72.27 0.73 '
, BRANDY 1.4 104.60 71.4 1.46
o ADLITTLE 0.7 12.56 13.43 0.94 \
k: SHARE1B 0.9 43.08 40.50 1.06 A
¥ ISRAEL 0.7 53.7 0.5 0.89 :
« BRANDM 1.0 147.8 134.18 1.10 3
% STAR 1.2 310.5 251.21 1.24 .
ETAMACRO 1.3 271.04 180.22 1.50
r [E226 0.7 107.53 137.79 o.7eJ !
i 0.9 Geom. Meen: 1.07)
¥ {
) (SHIP))
\ _
- Probiem 7
. SHIP04S
. SHIPO4L
[SHIPORS '
b SHIP12S j
W SHIPOSL h
SHIP12L
: §
, . _ 3
: (MISC.) ITERATIONS cPU A
‘d Problem Parametri Para./Simp.
RECIPE . 8.80 1.03
3 BORE3D 110 0.9 29.94 1.05 -
. GROW? 337 2.0 53.60 1.74 N
, SEBA 149 0.7 106.80! 0.83
. SHELL 318 1.2 143.23 1.27 iy
- STANDATA 74 0.2 130.7 0.36 -}
; VTPBASE 144 0.34 65.4 0.43
~ GROW1S 2831 5.53 262.8 5.10 :
) GANGES 792 1.1 . 477.71 1.34 N
| GFRDPNC 61 0.8 287.16 278.8 1.0C ¥
. GROW2 5677 8.3 3918.87 630.30 6.21 N
L SIERRA 923 0.7 899.67 1145.80 0.7 3
: FFFFFB00 604 0.3 303.00 878.63 0.34, j
CZPROB 1764 0.9 2019.38 1773.07 1.14
NESM 2924 0.5 2573.99‘ 4051.3 0.66 ;
A 80BAU3B 6085 0.7 17267.64] 19078.97 0.91
Y 25FVa7 4386 0.4 4261.61 8721.53 0.4 ¢
* 0.9 Geom. Mean: 1.01 -
3 g
'
f 64 .
2 .
-":;:;:i:i:i\.-‘“\)l‘v"; ;k; k \"‘.';:'v \'J'-.} . ¥ '*'\ o N) \}.‘-q}‘}\- -_""i\' Yy ’\.) “- . '-*N " _,' J‘*\J'\)‘\J‘.V*)“" \T\Q(\ N\

¢ Figure 4-13. Results for Parametric Aigorithm on Scaled Problems

(KETRON) TERATIONS [e-T]
[Problem Parametn Simplex Parametri Simpiex] Pars./Sim
DEGEN1 20 15 5.27 4.9 1.0
KB2 47 55 0.8 5.8 5.9 0.97]
WOOD1P 698 87 0.8 1986.8 2047.5 0.97
DEGEN2 98 1278 0.7 421.7 §23.26] 0.81
TUFF 700 1124 0.8 285.2 401.4 0.71
WOODW 15484 3801 4.0 40923.70 7933.9 5.1
CYCLE 1819 3017 0.8 3710.82 5912.14 o.ng
NZFRI 2595 7454 0.3 2908.8 8904.42 0.42
DEGEN3 4793 10453 0.4 7933.65] 17283.76 0.46}
Geom. Mean: 0.8 Geom. Mean: 0.89
(PILOT) cPU
Problem Parametr Simpiex] Para./Sim
PILOT4 697.1 841.0 0.83
PILOTWE 2395.27 8457.3 0.3
PILOTS 86456.5 84860.0 0.7
MOTJA . 7082.3 7751.9 0.91
0.67 Geom. Mean: | 0.68}
(STAIRCASE) ITERATIONS cPU
[Problem Simplex Parametri Simplex] Para./Sim
SCAGR? 88 13.95 14.30) 0.9
SCORPION 104 1.1 45.18 38.3 1.18
SC205 110 1.2 26.01 22.30 1.47
SCSD1 szs' 0.24 5§2.84 145.3 0.36
SCTAP1 216 1.2 76.12 81.40 1.24
SCFXM1 315 1.37 128.29 92.90 1.3aH 4
SCAGR2S5 307 1.1 127.78 105.40 1.24 NS
SCsDe 1561 0.4 275.19 553.40 0.50 »
SCFXM2 874 1.0 505.08 441.20 1.14 ’;
SCRS8 668 0.7 258.30 302.30 0.85
SCSD8 4335 0.87 2975.4 3288.1 0.90 ¥,
SCFXM3 1223 1.2 1217.21 915.2 1.33 °
SCTAP2 753 0.9 649.82 802.50 1.oa| N
SCTAP3 944 0.86 965.38 988.30 0.98 oS
Geom. Mean: 0.89 Geom. Mean: | 0.97} v

T

:

Sl

S5 s

x

)

INENX N} XN N

‘0.0 U. 4,8

*8,9 8.8 4 p" - ‘8800 80 878 4%

Figure 4-13(ctd). Results for Parametric Algorithm on Scaled Problems

(STANFORD) TERATIONS chu
Problem Puamnﬂg Simplex] Para./Sim Parametri Simplex} Para./Sim
ARRO 7) 1.1 2.45 2.60 0.94]
SHARE2B 102 1 0.8 14.78 14.40 1.03
BEACONFD 85 98 0.8 35.07 33.10 1.06
CAPR! 270} 245 i.1 85.15 £7.30 1 14
BRANDY 405 477 0.8 100.56 111.50] 0.90
ADLITTLE 114 114 1.0 12.41 12.00 1.03)
SHARE1B8 182 274 0.6 32.48 40.80 0.80
ISRAEL 230‘ 296 0.78 54.47 §3.30 0.86
BANDM 550 454 1.21 164.56 139.70 1.18
STAIR 847 418 2.03 437.80 253.40 1.73
ETAMACRO 5§32 618 0.8 180.27 190.80 0.94
|[E226 410] 472 0.8 107.88 112.90] 0.95
Geom. Mean 0.9 Geom. Mean: 1.03
(SHIP) TTERATIONS cPU
Problem Simplex] Para./Sim Parametri Simplex] Para./Sim
SHIP04S 144 1.0 112.12 95.7 1.17
SHIPO4L 231 0.9 193.3 171.7 1.13
SHIP08S 24 1.1 272.1 232.2 1.17
SHiP12S 399 0.9 462.8 436.0 1.06
SHIPOBL 449 1.0 705.87 578.80 1.2
SHIP12L 889 0.9 1531.11 13084.4 1.11
Geom. Mean: | 1.03] Geom. Mean: | 1.14]
(MISC.) cPy
Problem Para./Simpl _Parametri Simplex] Para./Simp
RECIPE 1.00 9.51 9.40 1.01
BORE3D 0.80 34.66 38.30 0.88|
GROW? 1.86 85.12 §3.20 1.60
SEBA 1.02 169.57 158.60 1.07
SHELL 1. 170.5 150.20 1.14
STANDATA 58 129 0. 48.1 63.60 0.72
VTPBASE 44 0. 15.97 20.40 0.78
GROW1S 787 484 1. 377.11 235.80 1.60
GANGES 789 899 1. 637.15 529.50 1.20
GFRDPNC 613 859 0. 288.5 288.20 0.99
GROW22 1232 7586 1. 835.34 507.70 1.6
SIERRA 1244 1351 0. 1182.7 1148.9 1.03
FFFFF800 886§ 939 0. 441.71 435.1 1.02
CZPR0B 1581 1525 1, 18168.34 1519.5 1.20
ESM 3528 2887 1. 3319.47 2377.50 1.40
80BAU3B 857 174886 0. 22105.5 37894.10 0. 56
25FVa7 4792 8442 0. 4489.17 7684.40 0.5
Geom. Mean: 0. Geom. Mean: | 1. 04|
66
R D e e e e A i e e e e A A L i T e ‘.

PNl]

Jd

L@ »

Fonie

® Sxpsin,
S

AR AR AR U IR W W NPT WU WU UV Y U

Figure 4-14. Biocked Pivots for Parametric Aigorithm on Unscalea Problems

(KETRON) PARAMETRIC

Problem lterations # Blocked _ |% Blocked
[DEGENT - 23 10| 43.5
KB2 sof aol 37.5
WOOD1P 745 eso| 87.2
1062 757
524 172
1841 712
2348 2124
22331 686
4921 409_2_[

903

(PILOT) SIMPLEX

Problem iterations iterations # Blocked % Blocked
PILOT4 1621 . 3811 562 14.7

PILOTWE 3743 : 1573 240 15.3
PILOTS 17782 . 4024 119 3.0
. 3 l 210

PILOTJA 6205 50568 1061

(STAIRCASE) SIMPLEX

/

Problem terations iterations # Blocked
SCAGR? . 91 9
SCORPION . 138 58|
SC205 . 139 14
SCSD1 293 127
SCTAP1t 389 106
SCFXM1 393 112W
472 70
804 I
848 235
1003 200
1219 56
1355 365
1503 613
1755 911

N~

o -
D=2 aaoPaov
comow®Prno®Law
NERNBESNWGNN =&
SO ON®A®NWON,
CODONONNOONDW=0®

N -=-0nN

.

. - - & & - o - cie - . - o~ . P o - - - LU - - MMt Ny g

e \i'_‘- e _’..‘-J'\-..‘-f‘r _’-.\ AT % ..-l'_‘-'\.-,'.\-‘ NER I _‘c"_.-.\-f‘\- L) "y.’.\'.\"\‘{\'.\' _\.f\.: '_-.‘{ & ‘.
» ratl v M Y, A

REEN Y

a¥s a¥s (SR V0 aWh L4V RV R 0y

Figure 4-14(ctd). Blocked Pivots for Parametric Aigorithm on Unscaled Problems

. (STANFORD) PARAMETRIC SIMPLEX
)
b
o Problem iterations od Iterations # Blocked % Blocked
i ARRO 3 50.0 9 3 55.6
’ SHARE28 123 3s 28.5 108 22 21.0
i BEACONFD 8s 2 2.4 87 6 6.9
CAPRI 203 15 7.4 32 2s 7.8
KX BRANDY 442 3 8.1 298 38 12.2
N ADLITTLE 114 3 2.6 144 18 12.5
o SHARE1B 266 2 0.8 28 2 0.7
" ISRAEL 233 0 0.0 29 52 17.4
W BANOM 477 s0f 10.5 445 3s 8.1
e STAR 67 21 3.1 526 31 5.9
ETAMACRO 847 211 24.9 640 210 32.8
’. [E226 409 54 13.2 581 83 14.3
4
" _
_;:' (SHIP) PARAMETRIC SIMPLEX
i -
3 [Problem iterations # Blocked % Blocked iterations # Blocked % Blocked
- SHIP04S 214 26 12.1 .
~ SHIPO4L 287 20 7.0
SHIP08S 293 50 17.1
SHIP12S 456 69 15.1
; SHIPOSL 571 67 11.7
& SHIP12L 968 164 16.9
& — —
,:' (MISC.) PARAMETRIC SIMPLEX
i:: Problem lterations # Blocked % Blocked iterations __|# Blocked % Blocked
b RECIPE 9.1 3 9.1
BORE3D 71.8 90 81.1
" GROW? 1.8 7 4.2
" SEBA 21.5 31 14.6
‘ SHELL 17.1 48 18.6
L STANDATA 74 40| 54.1 2471 68.2
iy VTPBASE 144 57 39.6 180 37.8
D GROW1S 2831 46| 1.6 2 4.3
GANGES 792 147 18.8 148 21.8
N GFROPNC 61 244 40.0 329 48.2
b GROW22 sngl aa| 1.6 41 4.8
K SIERRA 923 176 19.1 1316 63 48.6
" FFFFF800 604 126 20.9 2027 615 30.3
" CZPROB 1764 53 3.0 1841 57 3.1
NESM 2924 3 0.1 5183 1 0.0
> 80BAU3B 6085 938 15.5 8059 791 9.8
by [25FV47 4386| 445| 10.1 9072 720] 7.9
d
[
&
)
W
)
"
" 68
%
X
L)
(X
R B A

e

A s e

L v_s A

AA USRS W

TR T O R R A U R T ATV TR UM UM S TR TR PO RO PO P N PO 2

Figure 4-15. Bilocked Pivots for Parametric Algorithm on Scaled Problems

.

(KETRON) PARAMETRIC

Problem % Blocked % Blocked |
DEGEN1 45.0 " 40.0
KB2 27.7 25.5
WOOD1P €8.1 62.2
DEGEN2 62.0 57.1
TUFF 45.7 36.1
WOoDW 90.1 47.6
CYCLE 90.2 85.0
NZFRI 43.6 50.7
DEGENS 78.8 78.4
(PILOT)

Problem %% Blocked

PILOT4 13.0

PILOTWE 10.1

PILOTS 9.0

PILOTJA _zL 12.0

(STAIRCASE) PARAMETRIC

Problem lterations __|# Blocked | % Blocked % Blocked
SCAGR? 2 2.] 11.4
SOORPION 42| 3s. 42.3
$C205 7 5. 12.7
SCSD1 115 7s. 63.2
SCTAP1 8s| 3 27.8
SCFXM1 48 1 13.0
SCAGR25 48 1 15.6
SCSD6 364 55 38.8
SCAXM2 105 1 13.5
SCRS8 193] a7. 26.9
SCSD8 2582 68. 62.8
SCFXM3 198 13. 15.0
SCTAP2 458 63. 55.6
SCTAP3 555 €8. 59.7

EPRED
L
T

0 SXNEAN 0 T
A R - K J

Vd {'.I' ”

"t..f‘
s ;;l lx)

?

R N O U A N N N N R PO G Sl R TR O O T I U U YUW. . PUT U PO U I L U UL U U O RNV

-
-

3."
]
N !"
<
Figure 4-15(ctd). Blocked Pivots for Parametric Algorithm on Scaled Problems e
|! l
b
)
xR
o
(STANFORD) PARAMETRIC SIMPLEX » :
Problem iterations lterations # Blocked % Biocked '0::
AFIRO . 3 3 §0.0 a":
SHARE28 102 25| 245 118 200 17.4 a3
BEACONFD 85 wF 11.8 98| 17 17.3)
CAPRI 270 24 8.9 245 28 10.2
BRANDY 405 a7 9.1 477 28 5.9 o
ADLITTLE 114 2 1.8 114 13 11.4)
SHARE18 182 8 4.4 274 10 3.6 o
ISRAEL 2aoi 2 0.9 296 17 5.7 o
BANDM 550 28 5.1 454 28 6.2 ::«
STAR 847 56 6.6 418 52 12.4 ~
ETAMACRO 532 87| 16.4 618 122 197 4
E226 410 77 18.8 472 91 19.3 :;:
v
——— b
(SHIP) PARAMETRIC :_,_
Problem lterations iterations »
SHIP04S 156 16.0 A
SHIPO4L 226 16.4 (o]
SHIP08S 263 20.2)
SHIP12S 397 19.4 ha
SHIPOSL 483 13.3 A
SHIP12L 853 21.3 W
i'{
(MISC.) SIMPLEX)
Problem Iterations locked Iterations |# Blocked % Blocked -(‘
RECIPE 9.1 9.1)
BORE3D 45.4 57.4 »
GROW? 3.0 3.8 ”;
SEBA 13.0 15.9 oy
SHELL 19.4 18.6
STANDATA 34.5 57.4)
VTPBASE 22.7 42.7 s
GROW1S 3.4 2.8 s
GANGES 27.4 29.2 »
GFROPNC 368.4 41.1 3
GROW22 123 5.7 3.0 w
SIERRA 1244 22.2 40.9 3
FFFFFB00 32.6 36.8 D
CZPROB 1581 4.7 6.2 N
NESM 3525 0.2 0.0 .
80BAU3B 8573 12.7 1177 6.7 Ry
25FV47 4792 10.5 8.5 i\-
o
¢
%
\i
o
70 ™
o
l\‘
N

"t TNt et M TR T Rt e " aAta" 42" a4 " n"e m~

O PR R R Ty N R T TR et e T A AT A T et AT a e
RRRNS _\J'..- ‘.-(',".\| *- I AN A TR T e T ._-I‘..‘ :\.-._.-\ AR P .’.f\._\.f\,-\.‘\.- o \
/ A N A A T P AN R,

LI e M ’ : N S, P, x B A A

CHAPTER 5: EXTENSIONS AND FUTURE RESEARCH

This chapter briefly considers some untested ideas motivated by Chapters 2
and 3. Potential for improvement in feasible direction methods, dynamic pricing,
and parametric variants of the simplex method still remains. None of the ideas is
developed in detail, but the mathematics of the previous chapters should provide a
foundation for future work.

5.1. Feasible Direction Methods

Much flexibility remains for the algorithms of Chapter 2. In particular, there
exist criteria for selecting promising variables other than (2.13) or (2.30). However,
the results of Chapter 2 suggest that any good criterion must account for the sparsity
and degeneracy present in practical problems. One need not use two objectives to
handle degeneracy explicitly. For example, one could apply the approach of Chang
and Murty’s Gravitational Method (see {4]). Consider the linear program

minimize ¢z

subject to Az > b.

Assume a feasible solution z, and define
J((t) = {i : A,~.:c = b,’}.

J(z) indexes the tight constraints corresponding to z. If J(z) = @, z lies in the
strict interior of the feasible region, so —c provides a descent direction that permits a
positive step length. Otherwise, use the tight constraints to formulate the following
direction-finding problem:

minimize Ty
subject to A,y >0,
1-y"y>0.
The nonlinear constraint ensures boundedness of the problem’s feasible region. Its
optimal solution provides a descent direction with a positive step length. The
Gravitational Method does not maintain basic and nonbasic variables, but one could
modify the direction-finding problem and apply it to the algorithms of Chapter 2.

Specifically, consider the canonical form (1.2) and a (not necessarily basic) feasible
solution r. Let

J(zp) = {i:z;, =0}
The direction-finding problem becomes

minimize EZy
subject to A,)~y <0,
1-y'y 20.

71

AV Y AR Y RS A
»

G it Het ST i,

e e,

WL AL W R WU WU UM UMW U O A O PO TN IO TOTY AN AKX LN 42 Wgh Gt #a ¥ §)0° (A AR ANAN AR NG XX ¥ W3

The optimal solution of this problem yields a descent direction with positive step
length. This is extremely important given the susceptibility of feasible direction
methods to degeneracy. One also sees that the approach generalizes to positive
basic variables with a suitable redefinition of J(z). The additional work required
to solve the direction-finding problem may inhibit this approach. Nonetheless, it
illustrates another way to alleviate problems due to degeneracy. :

All of the computational tests involving feasible direction methods involve only
a single column exchange in the basis during each iteration. Although this tac-
tic guarantees a descent direction, it may result in some basic variables having
substantially smaller values than nonbasic ones. Remember that the one-to-one
correspondence between vertices and bases has vanished. One can associate any
basis with any feasible solution, but the benefit of the descent directions generated
by each basis may vary dramatically. Therefore, one wishes to associate the feasible
iterate with a “good” choice of basis. Single column exchanges limit the choice of
basis, so the development of computationally efficient techniques to exchange mul-
tiple columns during a single iteration emerges as an " nportant topic. The Box
Method of Cottle and Zikan (see [54]) provides insight into this problem.

5.2. Dynamic Pricing

The dynamic pricing criteria of Chapter 3 all display the ability to reduce
the iterations required by the simplex method tu solve practical linear programs.
However, we encounter many cases where the reduction in iterations fails to reduce
computation time. The need to develop additional techniques to reduce the extra
work becomes apparent. Theorem 4 actually takes advantage of a degenerate pivot
to reduce the computational effort in a multiple-priority pivot rule. Refer to [38]
and [39] for other ways to exploit degeneracy in the simplex method. Mathematical
results such as Theorem 4 should help, but one must also realize that MINOS was
developed for the single-objective format of the standard simplex method. The
implementations tested here conformed to that design. Additional modifications in
the structure of MINOS may improve the performance of multiple-objective pivot
rules.

Another approach to reducing computational time involves techniques to ap-

proximate the second objective reduced costs d;. All of the implementations com-

pute the quantities o and d; explicitly during each iteration. Exploration of cheaper
techniques to approximate these quantities may lighten the computational load.

The encouraging performances of these new rules on difficult practical prob-
lems does not necessarily suggest good worst-case behavior. None of the patho-
logical problems constructed (see [3], [17], [19], [24], {25] and [53]) to demonstrate
worst-case behavior of established pivot rules for the simplex method relies on de-
generacy. Furthermore, procedures such as (3.2), (3.3) and (3.6) attempt to emulate
inexpensively the maximum-improvement pivot rule (3.7). Jeroslow [19] established
exponential worst-case behavior of that rule. It therefore seems unlikely that re-
search into this area for the pivot rules of Chapter 3 will provide any significant
results.

Finally, application of a second objective to certain nonlinear programming
algorithms also merits investigation. Dynamic pricing criteria significantly improved
the performance of the feasible direction methods of Chapter 2. This suggests the
promise of using dynamic pricing when solving nonlinear programs by the reduced-
gradient method. Lemke’s algonthm may also benefit from this technique. Lemke’s
algorithm is a pivotal algorithm that can optimize certain quadratic programs in
addition to linear programs (see [41}). It solves the following linear complementarity

VSR LR A RS

o

x5
’

Lo !

ha Wha W U Y
Ol

&

T N

s
L3

! i 'I'l’l
R A)

BT O R T I T T T R WU W e W s D ATy evi atu atE el f R v s T B 9a0 Rad ol Wal Eah Vol S 0B 0ok Ak O A iR Bak b ‘Mgl ol out
. i el o A) Sad sal ¥ . B, % N .

+ [y

. problem:

' It — My =g, .
;’ iy =0, t=1,...,m (5.1)

" z,y > 0.

! Assuming nondegeneracy, the determination of a covering vector to initiate the

algorithm uniquely determines the sequence of pivot steps. However, in practice
some flexibility in the pivoting procedure may arise in the presence of degeneracy.
Theoretically one must appeal to the perturbation techniques used in the simplex
method to resolve such ambiguities. In practice it may be possible to break ties
arbitrarily without encountering a cycle; this is almost always true with respect
to the simplex method. If it also holds for Lemke’s algorithm, perhaps one can
exploit the flexibility arising from degeneracy. In certain cases, Lemke’s algorithm
may not find a solution to the linear complementarity problem even though one
exists; it can terminate on a ray. Freedom in selection of the entering variable
permits development of pricing criteria designed to avoid such an occurrence. In
: particular, let M. ; Tepresent a potential incoming column relative to the current
basis. Termination on a ray occurs when M.; < 0. Therefore, setting dy = 1,
dy = 0 and computing d; = d;j\?._,- = 0" M.; provides a measure of the likelihood
of termination on a ray ifa particular variable enters the basis. When freedom to
select the entering variable arises, one could utilize Z,- to choose the variable least
likely to result in termination on a ray.

e e -

PO TR TS

PR XXX X

5.3. Parametric Algorithms

The parametric algorithm of Figure 3-1 specifies an initial parametric objective
. vector. This is merely one of many possible legitimate initial vectors. Research
, into this area may reveal new initialization procedures that further enhance the
: performance of the parametric algorithm.

Parametric variants of the simplex method strongly resemble Lemke’s algo-
rithm applied to linear programs. In particular (see [28]), solving a linear program
by Lemke’s algorithm is equivalent to solving it by Dantzig’s self-dual parametr « al-

» gorithm. The selection of the parametric objective corresponds to the initialization

g of the covering vector. Given this relation, research into the proper selection of the

! parametric objective vector should provide insight about good initial covering vec-
tors for Lemke’s algorithm. Furthermore, the potential for the modified parametric
algorithm of Figure 3-2 to avoid degenerate pivots suggests an analogous variant of
Lemke’s algorithm in which the covering vector changes during the course of the
algorithm in a way designed to decrease the number of iterations.

ST I BT T T RS % LS KRS T I % %
O 0 N e T (8 P WA A N AW,

3

" -

w -
e

X Y X

-~

- be P T X D)

A X

v X

- e e

- -
(4

W

R TRERENS

e

W g e, " v,
Nk ' -

EAERERNN N N U N YUY U U O A I O R L R A R N VNG X WL WL Y YOy b T R P Va-gvg

CHAPTER 6: SUMMARY AND CONCLUSIONS

What conclusions emerge from this work? We have seen that sparsity and
degeneracy can inhibit the progress of the reduced-gradient variants described in
Chapter 2. Utilization of a dynamic second objective function helps avoid these
obstacles and significantly improves the performance of such algorithms. Although
the modified algorithm tested here slightly outperformed the simplex method with
respect to iterations, it failed to compete in terms of computation time. The notion
of using a reduced-gradient approach to solve linear programs has existed for many
years, but very few computational tests have appeared in the literature. Chapter
2 provides new insight into this topic by identifying essential problems with the
method, describing techniques to elude these difficulties, and establishing some
computational results. Although still not competitive with the simplex method,
the results achieved here substantially improve upon the status quo. Additional
improvements in this type of algorithm may remain, but they must account for the
sparsity and degeneracy present in practical problems.

The most important aspect of Chapter 2 is the motivation of the use of two
objectives to gain useful information about nonbasic variables. Pricing out to avoid
degenerate pivots has become a computationally teasible procedure. The idea gen-
eralizes to allow pricing out to avoid small pivot steps. Chapter 2 shows that these
concepts enhance the performance of variants of the reduced-gradient method.

Chapter 3 addresses applications to the simplex method. Additional extensions
of the two-objective approach focus on estimating the step length associated with a
nonbasic variable. Explicit computation of the exact step length for each potential
incoming nonbasic variable is prohibitively expensive. Dynamic pricing provides
one inexpensive way to estimate such step lengths.

The computational tests in Chapter 4 show that any of the pivot rules using
dynamic pricing outperfcrm the standard simplex method with regard to iterations.
Given the increasing emphasis on parallel computing, this result is useful by itself.

‘The results are less clear with respect to computation time, as reductions in itera-

tions frequently do not outweigh the increased work per iteration. The Degeneracy
Screen (pivot rule (3.1)) remains a safe rule, as CPU times stay close to those of the
standard simplex method for even the worst problems. Furthermore, it consistently
performs well on highly degenerate problems. Certain applications tend to generate
highly degenerate problems (for example, see {11”][2' Hence, one can probably an-
ticipate cases where (3.1) will always work well. The other pivot rules display the
capacity to perform well on a wider variety of problems, but this greater potential
is accompanied by increased risk of poor performance. Nonetheless, all of the dy-
namic pivot rules perform well on the majority of the large, difficult problems that
consume the most computer time.

The final conclusion from this thesis is that despite 40 years of intensive re-
search, potential for improvement remains in the simplex method as well as other
linear programming algorithms. Many researchers tend to assume that basic re-
search in linear programming has been exhausted. The results here suggest that we
do not yet fully understand the simplex method, let alone other linear programming
algorithms. Uncharted territory remains to be explored.

74

",y o«

A n® Vo 8 I B o o W N o . A W M M "N N8 .5

b Bt C v itstios 5y

Ch A e S)

-

=

-

ol

7

-
T

P AT &R

{l‘

v e T A g W oW W A G ¥u -t - - . - [
e N W A A RLOLT ,*Ir\m\ L CRCORCAY ‘\’""f“jc\; O “r"’:l' .‘-\.r\..“

-
" '3

o0t 0 020V 0 M nt B % a'8 e Vh 0" NG N N T T T O e Y v, 090000 a0a o 0n® iV 0t 0yt ala® (et ta¥ Ga® Rt Qat Bat 04t a0 0a¥ 0.0 300 0 0 Rt 00 0.0 €ad 00 Ba b a8 0.4 g d?

- -

..
ul
o,
CHAPTER 7: APPENDIX :;
! "
»
This chapter elaborates on the specifics of the computational tests of Chapters 2 &
and 4. Certain aspects of the tests involve generalizations of the main results of this l'.:
thesis. Inclusion of these details earlier would only have obscured the important .{'::
ideas. One need not read this chapter if only interested in the major ideas; no ¢
new mathematics will appear here. However, any reader interested in bridging the =
gap between theory and practice present in many implementations may find this -
appendix useful. BN
Section 1 develops a procedure to determine an optimal vertex from an op- i
timal solution. There exist several different ways to find such a vertex, including e
a procedure in MINOS based on the simplex method. The method defined below o
strongly resembles the feasible direction methods of Chapter 2. It enables those »
algorithms to produce an optimal vertex instead of just an optimal solution. Sec- o
tion 2 then extends the theory of Chapters 2 and 3 to bandle the bounded variable y
logic of MINOS. None of the changes involves any significant additional mathemat- oy
ics. Nonetheless, they provide useful insight into important aspects of a large-scale A
linear programming code. ¢
-
»
7.1. A Procedure to Find an Optimal Vertex From an Optimal Solution o
The algorithms of Chapter 2 find an optimal solution to the linear program N A
(1.1). However, given the interest in sensitivity analysis, an optimal vertex becomes .1
desirable. The following procedure determines such a vertex. "
Irrespective of the particular choice of promising variables, the feasible direction "N
method terminates with an optimal solution z* when the set P, defined in (2.13), is g
empty. Let B and N index the nonbasic variables associated with z* at termination. VA
Let W
I={jEN:Ej=0,.’£j>O}. :"
N
Since P = @, I indexes the positive nonbasic variables of z*. If I = @, z* is the K
optimal vertex corresponding to B. If [# @, =* is not a vertex. In order to identify »
an optimal basis, decrease the variables in I simultaneously down to zero. Let e o
represent a column vector of ones. In the framework of Chapter 2, set g, = g, = —e, “
and perform an iteration of the reduced-gradient method. The resulting solution it
remains optimal since &; = 0 for j € I. During this process individual variables ::
in I either attain zero or drive a basic variable to zero. In the latter case a pivot v
occurs. Each iteration decreases |I| by at least 1, so the procedure terminates with »
an optimal vertex in at most |I| iterations. o
We now consider an iteration in detail. We wish to decrease each variable in [7
without violating the equality constraints Az = b. In order to do so, define ¢ € R")
by A
Y
Q= —¢ w
qnyi 0 .:.{
Bgs = —A.,q:. :x:
Update z* by the relation R
z* — z* + bq. (7.1} . '
How large can A be? We wish to make 6 as large as possible while maintaining ol
nonnegativity of 23 and z}. In other words, N
4
r
U
75 3
2

]

T A o Ay e o o s 0 e A o L, L R R AR S e

- -
= e M

P

TI S g o

z*+60¢g>0
=>oq]‘2—l'; j=1...,n
x; ‘
2>0< = JEBUI:q; <0
45
. z‘.
= 6= min -—-2L (7.2)
JEBUI:¢; <0 q;
Let
*
k= argmin —-+

JEBUI4q; <0 g5

If k£ € I, a variable in I hits zero without driving a basic variable below zero. A
pivot is unnecessary. Update z* by (7.1? and proceed with another iteration. Note
that z3 = 0, so |I| has decreased by at least 1. Now, suppose k € B. Then a basic
variable hits zero before any variable in I does. Let r index the component of B
containing k. Define

I={jel:4,; <0}

I indexes variables in I that can drive the r** basic variable to zero. Since k € B

and
E 3

< min ~-L < 400,
1€I:¢9; <0 q;j

the ratjo test (7.2) implies that I # 0. One can then choose

§ = argmaxa,
JEI

to index the incoming variable. Then A,, < 0 and s € I. The resulting pivot
inaintains nonsingularity of the basis. Update z* by &7.1 . Since s € I enters the
basis index and z} = 0, |I| decreases by at least one. If |I| = 0, terminate witi an
optimal vertex. Otherwise, start the next iteration.

Siace this procedure decreases |I| by at least 1 during each iteration, it will drive
all positive nonbasic variables to zero within [I] iterations. Some flexibility exists
within the pivoting strategies. In practice, however, the procedure was unnecessary
for the majority of the problems tested, and it never required more than three pivots
hefore termination. As a result, extensive experimentation was never pursued.
Note that the computation times of Figure 2-3 include any time required by this
procedure.

7.2. Extensions to Bounded Variables

For expository purposes we have considered linear programs of the form (1.1).
Although ~ue can express any linear program in this form, the transformations re-
quired to do so trequently involve extra variables and constr ants, which would resnlt

]

SR AFUTLR "L SR SO YOI W TR . A, e - ‘ " P
2 ¥4 USRI OO U a8 a0 8.0%) 4, A% A% Rt ettt BTN R Saieah Al at e §00)30 050 18 0100 00t 2.0 2e8 0% gav o> hu* ia™oVin' o0n" 251 £

X~ g
-

L

P

. ~
] “
)
K in computational inefficiencies. In practice one wishes to process linear programs by
- in their most general form: N
)
minimize ¢Ty .
; subject to Apy = g X
\ Acy 2 bg (7.3) .
a ALy S bL ;
B 7 ~ '
A [<y<a. a
Any linear program fits (7.3) without any transformations. Define 3§ = (34,3¢,5;) ::
’ as slacks on the constraints of (7.3). Rewrite (7.3) as -
B -~
minimize cTy]
subject to Agy+38g —bg =0
! Ay~ (bg +35)=0 (7.4)
.. ALy+§L_bL=0
3 isysa7 ‘§E=0) §Ga'§LZO'
A Let
& Sg = §E - bE
s¢ = —(bs +35)
Sy = ‘§L - bL'
. Then (7.4) is equivalent to
. minimize ¢’y
& subject to Agy +s5, =0
: AGy + 38 = 0
: ALy + Sy = 0
3 I<y<i,
—bg <sg < —bg,
. —00 <86 < —bg,
, -b, <5, £+ o
. N
: Letting ~
o Ag I
{ A= | 4; I ,
AL I
r = (ystsstsL)v
X Iz(i,—bp;,—ooq_bL)v
» u = (t,—bhg,=b,, +x),
: 77
' - » A - - -
T A T G A A N N e Rt VLS

R T R R N T T Y T TS e A A T S R R R R AR vav g6 _gav- TR

- -
-
-

. - o

(7.4) becomes

-,

T

minimize c° T
: subject to Az =0 (7.5) ;,
Lp <z <u. "
)
:. MINOS processes the general linear program (7.3) into the form (7.5). Only the t
' bounds on the variables distinguish (7.5) from the standard form gl.l). Therefore, !
the remainder of the appendix focuses on generalizing the results of Chapters 2 and
! 3 to handle bounded variables.
. Bounded variables generate some minor modifications to the feasible direction A
- methods of Chapter 2. First of all, consider a search direction ¢ and an updated '
! solution ¥ = z + ¢ as in (2.2). Equation (2.4) ensures that variables in P do not
N violate the nonnegativity constraints of the standard form linear program (1.1).
\ We must now guarantee that such variables do not violate the bound constraints of
i (7.5). In other words, for j € P,
5
X lj < zj+8¢; Suj)
_ & 8g; <u;—3z; and '
bg; 21, - z; ;
i uj — I, : h:
e &0 < for j:¢; >0 and Ky
¥ % ’
Q
l. —_7.
’ < IJforj:q,-<0 n
4
P QGSmin{ min L_74 mip 3:]}.
‘, JEP:3; <0 q; JEP:q; >0 q;
i
- Similar logic applies to the basic variables in ratio test (2.5), the two-column linear
’ program (2.12), and the pivoting tactics outlined by (2.15-2.20).
Bounded variables also influence the choice of promising variables. (2.13) now
- becomes
X . .. J]¢<0and z; <uj, or
j€Pif {E,->0andxj>l,-.
¢ The modified promising criterion (2.30) and pivot rules (3.1), (3.2), (3.3) and (3.6)
) all utilize reduced costs computed from a second objective vector d. Bounded
variables affect the definition of d. Recall the choice of dy defined by Lemma 3. For
s 1 =1,...m, set _
- d;, = 1 1f:r:j..=.0,
¥ (0 otherwise.
v

This particular choice of d identifies potential incoming variables that would cause
= a degenerate pivot. In the presence of bounded variab%es, degeneracy occurs when
a basic variable resides at one of its bounds. Also, instead of increasing from zero,
a potential incoming variable r; may increase from its lower bound !; or decrease

(- from its upper bound u;. Let us examine these two cases separately. E’irst, suppose

7 €, < 0, so r; increases from l;. A degenerate pivot occurs if

; 3i:4,;>0, z;, =1; or

\ _'Y] ’ Jl]I (T.G)

. A,; <0, zj, = uj,.

)

; 78

4 .
o »

Sy et p e e - - . ‘ ‘ .- e At e na e e e atE et ta N
J_' GRS gy Ry Vg ﬁ"' Calln, I ' ! \"'\- '-w."\.'\"f I T "' NS, Y A
8 » » ¢ » - - L [) L3 - Ly L3 . w - " »

[M\ e

.......

t 9.t 9.0 1"

GG AR TG IO A A T CYCRC AN (ST TR TR AR TS TS PO VO TER TR0 TORUPRIC TN U PO TUNE TON TR PYACTOSE TIRN TR0 PR PR gL YO Yo SRS INCL T

Therefore, for : = 1,...m, set

1 if I, = lj..,
dj; =1 -1 ifzj =uy, (7.7)
0 otherwise.

Ifd; = dTA; = 0TA; > 0, exclude z; from consideration in order to avoid a
degenerate pivot. If Z; > 0, a degenerate pivot occurs if

3i21§'<0, z;. =1 or
Y wo (7.8)
A;; >0, zj, =uj,

(7.8) is the opposite of (7.6), so set dp as in (7.7), but exclude z; from consideration
if d; < 0. Thus, the extension to bounded variables still only requires a single solve
of the form (2.26) for the vector o.

Equation (7.7) describes how to determine d, in the presence of degenerate
basic variables. This suffices for pivot rule (3.1), but the criteria (2.30), (3.2), (3.3)
and (3.6) consider positive basic variables as well. In such cases the value of a basic
variable r;, no longer determines the value of d;;. Instead, consider the distance z;
of z;; to its closest bound:

zi = min {z;;, - l;;,uj, — z;;} i=1,...m.

The values of z; determine the values of dj;. So, for example, assuming that z; > 0,
one utilizes the following choice of d to implement pivot rule (3.6):

_] Y iz -l Swj - gy :
dj; = { 1)z ifzy —l; >u, gy i=1,...m. (7.9)
In practice, set z; to € > 0 if z; < €, where € represents an appropriately defined
tolerance. Note that if €; > 0, z; decreases if it enters the basis. In that case one

modifies pivot rule (3.6) so that nonnegative values of d;, instead of nonpositive
ones, distinguish nonbasic variables with top priority. The same approach applies
for pivot rules (3.2) and (3.3).

Theorem 4 illustrates an updating procedure for ¢ provided a degenerate pivot
occurred during the previous iteration of the simplex method. Since the bounded
variable form (7.5) redefines the notion of degeneracy, the value of p in the update
(3.22) depends on the specifics of the pivot. In addition, MINOS 5.1 permits nonba-
sic slack variables with negative lower bounds and positive upper bounds to reside
at any value between the bounds. This tactic attempts to improve the stability
of the feasible iterates. It also aids recovery from singular bases and helps with
restarts. This featurc generates two additional types of degenerate pivot. A total
of six possible types of degenerate pivot can occur. Each one is listed below, along
with the corresponding vaﬁue of p. Remember that, regardless of the specific case,

a degenerate pivot during the k** iteration implies that
d5h+l = dBn. + per.

Let s and j, index the incoming and outgoing variables during the degenerate pivot
of iteration k.

. - - - 'p ’.’ 'I ’ lllllllllllll . .A AT) - L] LI
P A I P i S S R S R A S S _\"\’ T o
2 - L b L) L)

- LI -~ g - - - - L] -
-.-.\--\:.: N \' -‘~ \-: \-,.‘l. l.\f\-\ . \

A

. ¥

v ey

o
e
reay L

v 2
1@

[ol

A
5

Lo 2 4 2L
a
O e

y 4
.

T WU T IO TN A T O T K O I I Y PR Y WL sl Ve @ia A%n 89 64 4 8% §3% .V Ng A5 als ath’

Case 1. Suppose z, = [,,and = ={; . Both the incoming and outgoing variables
reside at their lower bounds. Therefore, dg, ,,(-) = dg, (), 50 p = 0.

Case 2. Suppose z, = l,, and z;, = uj,. The entering variable resides at its lower
bound, while the outgoing variable resxdes at its upper bound. In this case (7.7) or
(7.9) unphes that dp, () = —dp,(-), 50 p = —2d,.(,,

Case 3. Suppose z, = u,, and z,, = u; . This is analogous to Case 1, and p = 0.

Case 4. Suppose z, = u,, and z,, = I . This is analogous to Case 2, and p =

By(r):

Caseh5. Suppose [, < z, < u,, and z;, = [l; . This case can arise when the

1ncoxmng variable xs a slack variable mxtlahzec{ between its bounds. Let v =
f(min {z, - l,,u, — z,}), where f is the function that determines the basic compo-

nents of d (recall (2 27)) Then, dp,,,(ry =7 =da,(-) + P, 50 p =7 — dp, ().

Case 6.dSuppose l, < T, < u,, and z;, = u;,. This is analogous to Case 5, so

p=7- By(r):

The parametric algorithm also uses a second objective vector d, albeit a con-
stant one. Although the generalization of Theorem 4 becomes unnecessary, bounded
variables affect the pivoting procedure. Recall that the algorithm sets d; = ||A4]|,
for j € N, in order to ensure optimality with respect to the para.metnc objective
function y,(#) = €y, + 8dy, > 0. Remember that the bounded variable form (7.5)
permits nonbasic variables to reside at their upper bounds. As a result, if a nonbasic

variable ; has positive reduced cost and equals its upper bound, use —dJ instead

of d; in the denominator of the ratio test (3.10).

"This concludes the appendix. Since the author did not wish to burden the
reader with every equation in the bounded variable format, many equations influ-
enced by the change in form have been omitted. However, we have considered all
of the different ways bounded variables affect the mathematics of the thesis. The
reader can use the results of this chapter to derive the remaining relations.

80

S .r\..-_\'.- .r',*-r .I'.‘J'\J'__-‘ e -('\J‘ _.. . --,: . .r\a__.r_:.-_:.-_:.' O

b g, S N

AL IR

-

YRS N

-
ol

&

CrT LY
4R
-

&‘

f{g. {

o

gl

P A L O ORI A
ARSIV YA AN

rm-.rm. W TURT MR AR AR AR AR TN TN O SN AR T RN R N O TN 7 YV R VY o 2% AFa fra Qe -pia AVa Aia gl gls"

REFERENCES

[1] Adler, I., Resende, M.G. and Veiga, G. (1986). An implementation of Karmar-
kar’s algorithm for linear programming, Technical Report ORC 86-8, Opera-
tions Research Center, Department of Industrial Engineering and Operations
Research, University of California, Berkeley.

[2] Ashford, R. (1986). Devex pricing in the simplex algorithm, Warwick Papers
in Management No. 5, Institute for Management Research and Development,
University of Warwick, Coventry.

(3] Blair, C. (1982). Some linear programs requiring many pivots, Faculty Working
Paper No. 867, College of Commerce and Business Administration, University
of Illinois at Champaign-Urbana.

[4] Chang, S.Y. and Murty, K.G. (1987). The steepest descent gravitational meth-
od for linear programming, Technical Report #87-14, Department of Industrial
and Operations Engineering, the University of Michigan, Ann Arbor, Michigan.

[5] Cooper, L. and Kennington, J. (1979). Nonextreme point solution strategies
for linear programs, Naval Research Logistics Quarterly 26, pp. 447-462.

(6] Dantzig, G.B. (1963). Linear Programming and Extensions, Princeton Univer-
sity Press, Princeton, New Jersey.

[7] Dantzig, G.B. (1988). Making progress during a stall in the simplex algorithm,
Technical Report SOL 88-5, Systems Optimization Lab, Department of Oper-
ations Research, Stanford University, Stanford, California.

[8] Eiselt, H.A. and Sandblom, C.-L. (1985). External pivoting in the simplex
algorithm, Statistica Neerlandica 39, pp. 327-341.

[9] Eiselt, H.A., Sandblom, C.-L. and DeMarr, R. (1985). Computational experi-
ence with external pivoting, Mathematical Programming Society Committee
on Algorithms Newsletter No. 12, pp. 16-20.

[10] Eiselt, H.A. and Sandblom, C.-L. (1986). On estimating optimal bases for linear
programs, Journal of Information and Optimization Sciences 7, pp. 29-39.

[11] Faikner, J.C. end Ryan, D.M. (1987). Aspects of bus crew scheduling using
a set partitioning model, Department of Theoretical and Applied Mechanics,
University of Auckland, Auckland, New Zealand.

[12] Fathi, Y. and Murty, K.G. (1986). Computational behavior of a feasible di-
rection method for linear programming, IE Technical Report #86-11, North
Carolina State University, Raleigh, North Carolina.

[13] Gass, € [. and Saaty, T.L. (1955). The computational algorithm for the para-
metric objective function, Naval. Res. Logist. Quart. 2, pp. 39-45.

(14} Gill, P.E., Murray, W. and Wright, M.H. (1981). Practical Optimization, Aca-
demic Press, London.

[15] Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A. and Wright, M.H. (1986).
On projected Newton barrier methods for linear programming and an equiva-
lence to Karmarkar’s projective method, Mathematical Programming 36. pp.
183-209.

81

L Wy Wy VT o ¥ T, T 8 LR G LS AN L] « TR " AL TR AT el Yool SRS " o, a, wL e
s S e S N O N A O N N N N N R L

v
13
8
w «_z_ oY
AN R
R G2

.'vli: =
<@ 4
LA T A

2"

‘l
Al
Y A

r‘
-\"..&.

X

AT
@ E55 'i'ﬂ;zr
- -

B AY 4
vy
-
- 40'

Iy

PR
A

] .

ol)y

ARy

A

e’

55
Py

DA
i

o

I‘/fv‘ff(
R

L4

NN

[16] Gill, P.E., Murray, W., Saunders, M.A. and Wright, M.H. (1987). Maintaining
LU factors of a general sparse matrix, Linear Algebra and its Applications
88/89, pp. 239-270.

[17] Goldfarb, D. and Sit, W.Y. (1979). Worst case behavior of the steepest edge
simplex method, Discrete Appl. Math. 1, pp. 277-285.

(18] Harris, P.M.J. (1973). Pivot selection methods of the Devex LP code, Mathe-
matical Programming Study 4, pp. 30-57.

[19] Jeroslow, R.G. (1973). The simplex algorithm with the pivot rule of maximizing
criterion improvement, Discrete Mathematics 4, pp. 367-377.

[20] Kalan, J.E. (1976). Machine-inspired enhancements of the simplex algorithm,
Technical Report CS75001-R, Computer Science Department, Virginia Poly-
technical University, Blacksburg, Virginia.

[21] Kallio, M. and Porteus, E. (1978). A class of metliods for linear programming,
Mathematical Programming 14, pp. 161-169.

[22] Kallio, M. and Orchard-Hays, W. (1981). Experiments with the reduced gradi-
ent method for general and dynamic linear programming, in Large Scale Linear
Programming (G.B. Dantzig, M.A .H. Dempster and M. Kallio, eds.), pp. 631-
662, IIASA, Laxenburg, Austria.

(23] Karmarkar, N. (1984). A new polynomial-time algorithm for linear program-
ming, Proceedings of the 16th Annual ACM Symposium on the Theory of
Computing, pp. 302-311.

[24] Klee, V. (1965). A class of linear programming problems requiring a large
number of iterations, Numer. Math. 7, pp. 313-321.

[25] Klee, V. and Minty, G.J. (1972). How good is the simplex algorithm?, in Pro-
ceedings of the 3rd Symposium on Inequalities (Shish, O., ed.), pp. 159-175,
Academic Press, New York.

[26] Lustig, 1.J. (1985). A practical approach to Karmarkar’s algorithm, Techni-
cal Report SOL 85-5, Systems Optimization Lab, Department of Operations
Research, Stanford University, Stanford, California.

[27] Lustig, 1.J. (1987). Comparisons of composite simplex algorithms, Technical
Report SOL 87-8, Systems Optimization Lab, Department of Operations Re-
search, Stanford University, Stanford, California.

(28] Lustig, I.J. (1987). The equivalence of Dantzig’s self-dual parametric algorithm
for linear programs to Lemke’s algorithm for linear complementarity problems
applied to linear programs, Technical Report SOL 87-4, Systems Optimiza-
tion Lab, Department of Operations Research, Stanford University, Stanford,
California.

[29] Lustig, I.J. (1987). An analysis of an available set of linear programming test
problems, Technical Report SOL 87-11, Systems Optimization Lab, Depart-
ment of Operations Research, Stanford University, Stanford, California.

[30] Megiddo, N. (1983). Linear-time algorithms for linear programming in R* and
related problems, Siam J. Computing 12, pp. 759-776.

[31] Murtagh, B.A. (1981). Advanced Linear Programming, McGraw-Hill, New
York.

82

L L - ’

L

.-‘; -‘. i:ﬁ"';';"r‘{v .

g -

PR P A TN R o 0 N W W U U U U R T I I 7 A T R Y o U SN T2 0 b el el RV A AP 4V 0 G At Bat Bab B’ ‘- O

‘-

-

S

[32] Murtagh, B.A. and Saunders, }{ A. (1978). Large-scale linearly constrained
optimization, Mathematical Programming 14, pp. 41-72.

[33] Murtagh, B.A. and Saunders, M.A. (1983). MINOS 5.0 User’s Guide, Techni-
cal Report SOL 83-20, Systems Optimization Lab, Department of Operations
Research, Stanford University, Stanford, California.

i) (34] Murtagh, B.A. and Saunders, M.A. (1987). MINOS 5.1 User’s Guide, Technical

Report SOL 83-20R, Systems Optimization Lab, Department of Operations

Research, Stanford University, Stanford, California.

& -

'

: (35] Murty, K.G. (1976). Linear and Combinatorial Programming, John Wiley and

¥ Sons, New York.

0 [36) Murty, K.G. and Fathi, Y. (1984). A feasible direction method for linear pro-
gramming, Operations Research 3, pp. 121-127.

0 [37] Nazareth, L. (1985). Pricing criteria in the simplex method, Computational

K Decision Support Systems, Berkeley, California.

/! [38] Perold, A.F. (1981). Exploiting degeneracy in the simplex method, in Large

Scale Linear Programming (G.B. Dantzig, M.A.H. Dempster and M. Kallio,
eds.), pp. 55-66, IIASA, Laxenburg, Austria.

(39] Perold, 4.F. (1981) A degeneracy exploiting LU factorization for the simplex

- method, in Large Scale Linear Programming (G.B. Dantzig, M.A.H. Dempster
and M.J. Kallio, eds.), pp. 67-96, IIASA, Laxenburg, Austria.

(40] Pyle, L.D. (1987). Generalizations of the simplex algorithm, Department of
Computer Science, Houston, Texas.

[41] Ravindran, A. (1973). A comparison of the primal simplex and complementary

: pivot methods for linear programming, Naval Research Logistics Quarterly 20,

N pp. 95-100.

[42] Renegar, J. (1986). A polynomial-time algorithm, based on Newton’s method,
for linear programming, Mathematical Science Research Institute, Berkeley,
California.

(43] Sethi, A.P. and Thompson, G.L. (1984). The pivot and probe algorithm for
solving a linear program, Mathematical Programming 29, pp. 219-233.

[44] Shamir, R. (1987). The efficiency of the simplex method: a survey, Management
Science 33, pp. 301-334.

(45] Sherali, H.D., Soyster, A.L. and Baines, S.G. (1983). Nonadjacent extreme
point methods for solving linear programs, Naval Research Logistics Quarterly
30, pp. 145-161.

’ (46] Strang, G. (1976). Linear Algebra and its Applications, Academic Press, Lon-
don and New York.

(47] Todd, M. (1988). Karmarkar as Dantzig-Wolfe, Technical Report #782, College
of Engineering, Cornell University, Ithaca, New York.

(48] Todd, M. (1988). Private correspondence.

[49] Vanderbei, R.J., Meketon, M.S. and Freedman, B.A. (1986). A modification of
Karmarkar’s linear programming algorithm, Algorithmica 1, pp. 395-408.

[50] Wolfe, P. (1962). The reduced gradient method, unpublished manuscript,
RAND Corporation.

LT 8 = e I

-
-

- -
g,

h 83

.....

R R O R O R O S A O O R O o e o o o O, N
3§ ! ! X

[51] Wolfe, P. (1963). A technique for resolving degeneracy in linear programming,
J. Soc. Indust. Appl. Math. 11, pp. 2u5-211.

[52] Ye, Y. (1987). Eliminating columns in the simplex method for linear pro-
gramming, Department of Engineering-Economic Systems, Stanford University,
Stanford, California.

[53] Zadeh, N. (1980). What is the worst-case behavior of the simplex algorithm?,
Technical Report No. 27, Department of Operations Research, Stanford Uni-
versity, Stanford, California.

[54] Zikan, K. and Cottle, R.W. (1987). The box method for linear programming:
part I - basic theory, Technical Report SOL 87-6, Systems Optimization Lab,
Department of Operations Research, Stanford University, Stanford, California.

[rJ " .o . . s A - - L -
l\‘ ’5)’ .f.‘l "\’-, \J'.' ~f v'. f-‘f g N \v-. AT AT A o, f ‘, ‘,5"\-’. '4'."(‘.'4' . .“‘.f\._\'.‘- ?_. ’. :~_‘ A ‘:_.‘

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Dato Entared
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
GOVY ACCEISION NOJ 5. RECIPIENT'S CATALOG NUMBER

. 1]

Technical Report SOL 88-15
4. TITLE (and Swbiitte)
Dynamic Pricing Criteria in Linear Programming

$. TYPE OF REPORT & PEMNIOD COVERED

Technical Report

6. PERFORMING ORG. REPOART HUMBER

§. CONTRACY OR GRANT WUMBER(Y |
NO0014-85-K-0343

(7. AUTHON(®)
Edward S. Klotz

I3 PERFORMING ORSANIZATION NAME AND ADDRESS

Department of Operations Research - SOL
Stanford University
Stanford, CA 94305-4022

11. CONTROLLING OFFICE NAME AND ADORESS
Office of Naval Research - Dept. of the Navy
800 N. Quincy Street
Arlington, VA 22217

W. » R.AI ILIH:N?. PROJECT, TASK

AREA & WORK UNIT NUMBERS

1TT1MA

1. REPORT DATE
July 1988
[13. NUMBER OF PAGES

84 Pages

SECURITY CLASS. (of this repent)

UNCLASSIFIED
WW—W

Te. OISTRIBUTION STATEMENT (of thie Repert)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIGUTION STATEMENT (of the abotrast antered in Block 30, if different from Repert)

15. SUPPLEMENTARY NOTES

olde oary and identity by bieek number)

19. KEY WORDS (Continue oo

Linear Programming, Simpiex Method, Reduced-Gradient Method,
Pricing, Degeneracy.

20. ABSTRACYT (Continue en reveree ¢'ds i noccscary and idonilly by bleck number)

Please see other side for Abstract...

0D , %" UM

COITION OF | NOV 68 (5 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

™
o u,

.......

.‘\1..-" r'\v",&' A n, ‘ AT AT T TN N \.."-;.--.‘..\- _.-:‘ .‘\- W .‘.._‘- NN AT T T N .. -...' d

T

I ®

N
WA .

i) o o a X T v
,'.‘a{& . ;'h';'l:’l.

RN

N
h_,“

Y Y YW
S, '.4"
> -V "

o B

¢

.,5.,
DN AR

')

...._.'<
e @

« 1
.fn‘

» ¥ Y

X S X g

5

A i gt)

Y
Sy %y

L)
[¥

SECUMTY CLASSIFICATION OF THIS PAGE(When Date Entered)

ABSTRACT

In recent years the interest in linear programming algorithms has increased
greatly due to the discovery of new interior-point methods. New results have also
prompted researchers to reconsider some previously discarded ideas in light of their
additional knowledge. This thesis begins with a study of some variants of the
reduced-gradient method applied to linear programs. Preliminary computational
tests revealed how sparsity and degeneracy, two characteristics present in most
practical problems, can severely inhibit such variants. The development of dynamic
pricing criteria to exclude certain columns from the search direction provides a com-
putationally efficient way to alleviate these difficulties. Application to the simplex
method yields a pivot rule designed to avoid degenerate pivots. Generalization of
the rule yields a cheap method to estimate the step lengths associated with potential
incoming nonbasic variables. The result is a set of pivot rules that appear partic-
ularly useful on highly degenerate and poorly scaled linear programs. Extensive
computational tests are presented.

N

5 " - e
B ACAC A AR A R {'x

SECURITY CLASSIFICATION OF Tu'® BAGE(WRe: o Entered)

« LN LA LY AL AR

N S TRS et T ¥ R - AR IR R N Ll e T
AT A e R IR R s et T AT S s W

(LS

>
-~

a -ty .

y A T

¥ - w o w o A

(et
~
L%

f

'J',_'{‘_:v'!;-' "y

P N O
LT S 0%,

R A U R Ay R R AT RO KN XK K

g > -

R bt B Ry LI GLY PR SN s I

R Rl S 0050}

Y e e R X R A
AR ARSI TRICAP IO 'S

X P -
[N s & ;
A x..\.-M. 5
B
A8 A g
XN
N SO

S

v
R
A
"-*-'5. \,"-,"'-.‘{.' .
PN AR
W E A

\ 4
s
"

-
)

AL
.‘_-.:_\.
!_‘\.-.Mui LA

.

\ 4
R
%

"n
N
"1*"

v

ot

P T
o

»
‘;\
.h

o
() " ¢

[
0 N

A 4
")

L J
O
A
l. .\ \J
[}

W

7.

~ X0
“l

1

()

2
K)
ty
Wi

v
[

